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ABSTRACT

Many organisms reproduce in temporary aggregations where estimates of colony
size can be made by direct counts. When individuals are not synchronous, however,
early breeders depart before the last arrive, so counts underestimate the total breed-
ing population. We present a model describing a colony’s census as a function of
arrival, breeding tenure, and the correlation between them, and we use it to illus-
trate how variance in arrival and tenure affect the census. Counts of breeding female
northern elephant seals (Mirounga angustirostris) from 1975 to 2007 were used to test
the model. Four of the model’s parameters—population size, mean and variance of
arrival date, and the correlation between arrival date and breeding tenure—could be
estimated from census data using a Bayesian approach; prior estimates of two other
parameters—mean tenure and its variance—had to be used to avoid overparame-
terization. The model’s predictions fit observed censuses well and produced reliable
estimates of population size and arrival behavior, showing that the maximum census
was 8%–16% below the total number of breeding females. This method could be
used for estimating abundance in any asynchronous aggregation, given independent
information on one of the defining distributions: arrival, tenure, or departure.

834



CONDIT ET AL.: COLONY CONSENSUS MODEL 835

Key words: Mirounga angustirostris, breeding asynchrony, pinniped colony size,
elephant seal population, inverse modeling, Gibbs sampler, Bayesian.

Many marine mammals and birds assemble in compact, isolated colonies where
direct counts of individuals are possible. These colonies are windows into the pop-
ulation biology of creatures that are otherwise aquatic and difficult to observe, and
are especially useful where breeding individuals can be counted so production of off-
spring can be assessed. Generating an estimate of total colony size works best where
breeding is synchronous so that a single count includes all individuals associated with
the colony. When there is asynchrony, however, a single count underestimates the
entire population because there is never a time when all individuals are present. We
produce here a general method for estimating the breeding population in this situa-
tion and develop it for the northern elephant seal (Mirounga angustirostris). Elephant
seals offer several traits ideal for modeling the size of a breeding colony: Females
collect in discrete groups that are easy to count, they move little during the breeding
period, and nearly every female ashore gives birth to a single pup so that the female
population reflects pup production (Cooper and Stewart 1983, Reiter and Le Boeuf
1991, Slip and Burton 1999).

Our model describes the number of animals in a colony as a function of arrival
time and breeding tenure of individuals. It incorporates asynchrony as variance in
both, and we explore the impact of asynchrony on population counts. We then fit the
model’s parameters to breeding counts using inversion (Tarantola 2005), searching
for model parameters that most closely predict observed censuses. This allows us to
test whether the model accounts for observed censuses but, more important, produces
useful estimates: total breeding population and the arrival behavior of individuals.

We developed the general framework of this model in the early 1970s and applied it
to estimating the population size of northern elephant seals at the Año Nuevo colony
in central California. Later, Rothery and McCann (1987) published a similar model
independent of our work, and similar modeling approaches have been developed in
asynchronous insect populations (Zonneveld 1991). Here we extend these models by
adding generality and using a Bayesian approach: We incorporate a variance in tenure
and a correlation between arrival and tenure, we estimate the arrival distribution as
well as population size, and we account thoroughly for error. We also evaluate the
number of censuses needed for good estimates of population size and arrival behavior.
Even though breeding asynchrony is widespread (Gochfield 1980, Ims 1990, Barba
et al. 1995), its impact on population estimates from direct counts is rarely addressed,
and our model may be useful for other assemblages of animals or plants.

Model for an Asynchronous Colony

Assume that individuals collect in a breeding colony each season, and call the
period of time each individual remains in the colony its breeding tenure. When
individuals depart, they do not return until the next season. If individuals are exactly
synchronous, then the entire population is present in the colony at the same time. We
consider the alternative, where individuals arrive at different times and where some
depart before others arrive. In this situation, no count reveals total colony size.

A model for the census. The core of the model states that the number of individuals
present in the colony is the number that has arrived minus the number that has
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departed. Use C(T) to denote the number of animals present on date T; Fa(T) and
Fe(T) the cumulative probability of arrival and departure (e for exit), respectively,
on date T; and N the total population using the colony. NFa(T) is the cumulative
number of animals that have arrived by date T, and likewise NFe(T) the cumulative
number departed. Then

C (T ) = NFa (T ) − NFe (T ). (1)

This is equation 2 of Slip and Burton (1999), following Rothery and McCann (1987).
Our aim is to estimate N; all we have is X(T), the observed count on date T (an estimate
of C). How much do we need to know about Fa and Fe in order to use X to estimate
N?

Write fa(T) and fe(T) for the probability density functions accompanying the cu-
mulative distributions Fa(T) and Fe(T), so

Fa (T ) =
∫ T

0
fa d x and Fe (T ) =

∫ T

0
fe d x . (2)

Consider a third probability distribution for breeding tenure, fb(t): the probability an
animal remains t days in the colony (t is a time interval, T a date). Intuitively, there
is a simple relationship between arrival, departure, and tenure: Arrival and departure
curves will be separated by the tenure, that is, the departure date is the sum of arrival
date and tenure.

To be general, there must be a variance in breeding tenure. To accommodate this,
the departure distribution must be calculated with an integral:

fe (T ) =
∫ ∞

0
fb (t ) fa (T − t )d t . (3)

The right side is a convolution of the distributions of arrival and tenure. It states
that the probability of departing on date T is found from the probability of arriving
t days earlier, summing over all values of t. Imagine that the average tenure is 20 d,
but some animals stay 19 or 21 d. Then the number departing on date 25 is the
number arriving on date 4 multiplied by the probability of staying 21 d, plus the
number arriving on date 5 multiplied by the probability of staying 20 d, plus the
number arriving on date 6 multiplied by the probability of staying 19 d.

One additional generalization is needed. Equation (4) rests on the assumption that
the breeding tenure does not correlate with arrival date. If it does, then fb(t) must
be written as fb (t |T ), or the probability that an animal arriving on date T remains t
days. Then

fe (T ) =
∫ ∞

0
fb (t |T − t ) fa (T − t )d t . (4)

Combining Equations (1)–(4) produces a model for the census as a function of the
distribution of arrival dates, fa(T), and the distribution of breeding tenure, fb(t):

C (T ) = N

∫ T

0
fa d x − N

∫ T

0

∫ ∞

0
fb (t |x − t ) fa (x − t )d td x . (5)
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Rothery and McCann (1987) used a similar approach for estimating the breeding
population of southern elephant seals but did not incorporate variance in tenure nor
the correlation between arrival and tenure. Then fe (T ) = fa (T − �b ) because the
number departing on date T is the same as the number arriving �b days earlier where
�b is the tenure (which in the simple case is a constant for all animals on all dates).
Only one distribution, fa(T), is required to predict C(T):

C (T ) = N

∫ T

0
fa (x )d x − N

∫ T

0
fa (x − �b )d x . (6)

Variance in Arrival and Departure

Synchrony in behavior, breeding or otherwise, is defined by variance in dates, and
the equations above describe variance in arrival, tenure, and departure. Recognizing
departure as the sum of arrival and tenure allows a precise relationship between the
variance of the three distributions to be derived. Call the variance in arrival �2

a and
the variance in breeding tenure �2

b , and because we allow a correlation between the
two, their covariance, cov(a, b), is nonzero. Departure date e = a + b, and the variance
in departure date, �2

e , is

�2
e = �2

a + �2
b + 2cov(a , b ). (7)

This relates synchrony in departure (or the termination of breeding) to synchrony
in arrival (onset) and synchrony in tenure. It demonstrates that no qualitative gen-
eralization is possible. Any variance in tenure, �2

b , tends to make departure more
variable than arrival, but the covariance can be negative and thus reduce the variance
in departure relative to arrival.

Specifying the Model

The model is generic to this point, making no assumptions about functions de-
scribing arrival, tenure, or departure, nor the correlation between arrival and tenure.
To illustrate or test, we need to specify distributions. Consider a normal distribu-
tion to describe arrival. Furthermore, assume that breeding tenure, b, is linearly
related to arrival date, a, and normally distributed at a given arrival date, that is,
b = q(a − �a) + �b + �, where �a is mean arrival date, �b is mean tenure,
ε ∼ Norm(0, k2), and k2 is the variance in tenure at a fixed arrival date; k2 ≤ �2

b
because of the correlation between b and a.

If k2 is constant across arrival dates—homoscedasticity—then

�2
e = (1 + 2q )�2

a + �2
b . (8)

This follows from cov(a , b ) = q �2
a and �2

b = q 2�2
a + k2. Given homoscedasticity,

the distribution of breeding tenure, fb, is normal, and thus, the distribution of depar-
tures, fe, is also normal because departure date e = a + b. The mean of the departure
distribution, �e, is �a + �b, and its variance is given by Equation (8). Given these
assumptions and the six model parameters—total colony size N, mean arrival date
�a, SD of arrival �a, mean tenure on the colony �b, its SD � b, and the regression
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slope q between a and b—arrival and departure distributions are fully specified
(Table 1).

Censuses can then be simulated by subtracting one cumulative normal distribution
(departure) from another (arrival), following Equation (1). If every individual remains
on the colony for exactly the same period (� b = q = k = 0), the departure distribution
has the same variance as the arrival distribution but has a mean displaced from the
arrival mean by the tenure. This is the model of Rothery and McCann (1987). The
resulting census curve is unimodal and symmetric, but the shape depends on whether
arrival and departure overlap: With overlap, the census is bell-shaped (dashed curves
in Fig. 1); without such overlap, the census curve is broad and flat-topped, with the
entire population present for a time.

If there is variance in tenure, then departures are more spread than arrivals and the
right tail of the census is extended (solid curves, Fig. 1). On the other hand, with
a negative relation q between arrival and tenure, departures have less variance than
arrivals, and the census declines abruptly (dotted curves, Fig. 1). Interestingly, � b
and q can interact to restore a symmetrical census, that is, a negative correlation of
just the right magnitude can balance the variance in tenure and produce a departure
distribution identical to arrival. This holds if q = − 1

2
�2

b

�2
a

(Equation 8). Thus, the
parameters � b and q interact, they cannot both be estimated from census data alone.
We expand on this problem below.

There is another crucial parameter interaction: total colony size N and mean tenure
�b. The interaction is illustrated by producing near-identical census curves for dif-
ferent values of N and �b (Fig. 2). One set of curves was calculated with N = 1,000,
the other with N = 1,155. In order to produce matching censuses, �b was adjusted
downward by a corresponding 15%, N and �b interact linearly. (We produced the two
matching census curves using parameter-fitting procedures described later.) Given
many N >1,000, we assert that there is a �b <30 that will produce a matching
census. Again, this means that N and �b cannot both be estimated using census data,
one must be known from independent information.

Applying the Model

The northern elephant seal. Our analysis of the model employs data from the northern
elephant seal’s Año Nuevo rookery in central California (37◦06′N, 122◦20′W). The
elephant seal was overhunted in the nineteenth century but has recovered since, and
we are interested in documenting its recolonization (Le Boeuf et al. 1974, Le Boeuf
1981, Cooper and Stewart 1983, Stewart et al. 1994).

Breeding Colonies

Elephant seal females form tight aggregations while breeding (Le Boeuf et al.
1972, Reiter et al. 1981, McMahon and Bradshaw 2004). Pregnant females haul
out sometime between early December and mid-February, give birth about 6 d
later, and nurse their pups about 25 d (Reiter et al. 1981, Ortiz et al. 1984). The
nursing period, and hence tenure, varies with female age and arrival (Reiter et al.
1981). While nursing, females move little and do not enter the water; however, prior
to birth, females sometimes move. Toward the end of the nursing period, females
copulate then return to sea, leaving weaned pups behind, and migrate long distances
to feeding grounds (Le Boeuf et al. 1993, 2000).
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Figure 1. Simulated censuses in an asynchronous breeding colony, with arrival and breed-
ing tenure normally distributed and a linear correlation between arrival and tenure. These
illustrate the impact of altering the departure distribution while the arrival distribution is
not changed. (A) Arrival (animals d−1) is the single-beaded curve on the left, peaking at day
45; three alternate departure distributions (also animals d−1) peak at day 85. Departure is
tighter than arrival (dotted), more spread than arrival (solid), or has the same variance as arrival
(dashed). The total colony size in all three simulations was N = 1,000. Arrival curve has mean
�a = 45 and SD � a = 15. Three departure curves, all based on mean breeding tenure �b
= 40: (1) solid curve based on an SD of tenure � b = 0.5 �b and correlation q = 0 between
arrival date and tenure; (2) dotted curve based on � b = 0 and q = −0.5; (3) dashed curve,
based on � b = 0.5 �b and q = −0.5. (B) Corresponding census curves (total animals present
each day). With tight departure, females leave fast and the census declines abruptly (dotted);
with spread departure, the census declines more slowly than it increases (solid); a symmetrical
census occurs when variance in departure matches variance in arrival (dashed).
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Figure 2. A demonstration that near-identical census curves can result from quite different
colony sizes. (A) Arrival and departure (animals d−1). Two alternate arrival functions to the left
(solid curves, one is beaded) and two departure functions to the right (dashed, one is beaded).
In the unbeaded arrival curve, �a = 47.8, � a = 15.5; in the beaded, �a = 46, � a = 15. The
unbeaded departure curve results from �b = 26, � b = 0.02 �b, q = −0.018; the beaded from
�b = 30, � b = 0.02 �b, q = 0.007. For the unbeaded (taller) curves, the total colony size
was N = 1,155, while for the beaded (shorter), N = 1,000. (B) Census curves (total animals
present each day), one beaded and one not; they are nearly identical on every day.

Census Methods

We carried out counts of elephant seals at Año Nuevo regularly throughout the
breeding season, December through March, from 1968 to 2007 (Le Boeuf et al. 1974,
Reiter et al. 1978, Le Boeuf 1981). Pups were first recorded on Año Nuevo Island
in 1961 (Poulter and Jennings 1966), and a single pup was born on the adjacent
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mainland in 1975 (Le Boeuf and Panken 1977). By 1995, single counts on the
mainland exceeded 1,900 females, with 500 more on the island. We focus our test
of the model on mainland groups, which are counted more frequently than island
groups due to easier access.

Observers can stand 5 m from female aggregations without causing disturbance,
and most of the beaches at Año Nuevo have 3–6-m cliffs or dunes adjacent, providing
elevated viewing angles from which all animals can be seen. Animals move seldom
enough that counts of every individual are possible. Adult females, adult and subabult
males, and pups differ in size and color and can be counted separately (Le Boeuf et al.
1974). The main limit to census accuracy is keeping count in large groups: For beach
harems that are long and linear, this is not difficult. The largest group, however, is
more than 10 females deep and includes up to 700 females, so it is necessary to use
imaginary lines through objects in the harem or in the distance as placeholders.

Breeding Tenure of Females

Because the breeding tenure of females at the colony is critical to the model, we use
an expanded data set to revisit estimates originally published by Reiter et al. (1981).
In each season, tagged females were dye marked on arrival and their subsequent
presence on the rookery recorded (Le Boeuf et al. 1972, Reiter et al. 1981). Data are
available since 1968, but only subsequent to 1980 have daily sightings of marked
females been computerized. The time between first and last observations of individual
females in those years provides an estimate of the breeding tenure: An animal first
seen on 10 January and last seen on 29 January was present 20 d. This estimate is
biased, though, because animals may be present but unobserved before the first or
after the last observation.

We judged the magnitude of the bias by simulating female sightings, assuming
each individual has a sighting probability, p, per day. In the simulation, each animal
has a known arrival date, a, drawn from a normal distribution with mean 0 and
variance 10, and a known breeding tenure, b, drawn from a normal distribution with
mean 31 and variance 14.4. The departure date was determined as e = a + b − 1.
For each day during the tenure, a random draw on the sighting probability, p, de-
termined whether the simulated animal was seen; call the first sighting date â and
the last ê . An estimate of the breeding tenure is b̂ = ê − â + 1, and an estimate of
the sighting probability is p̂ = s

b̂
, where s is the total number of days sighted. The

bias of estimated tenure is b̂ − b , which we can prove is 2(1−p )
p . Unfortunately, the

true sighting probability p is not known, only the biased estimate p̂ . In simulations,
animals for which 0.9 ≤ p̂ < 1 had a bias of ∼0.1 d, consistent with 2(1− p̂ )

p̂ as long
as p̂ ∼ p . For simulated females with p = 1, the bias was quite high because animals
with shorter tenure were more likely to be seen every day. This suggests that we can
get a nearly unbiased estimate of tenure using those females seen at least 90% of the
days present but not 100%.

There were 191 female breeding records meeting these criteria: 14 in 1980, 17
in 1994, 25 in 1995, and 146 in 1996; no other year had >7. Because there was
considerable overlap in confidence limits (based on standard t-tests) among those
4 yr, all data were combined in one large sample. Because our overall approach is
Bayesian, we used a Gibbs sampler to estimate mean tenure, �b, and its SD, � b
(Gelman et al. 1995). The posterior distribution of each parameter appeared normal
and can be described by the estimated mean and standard errors; these became prior
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distributions when fitting the model (Table 1). We also used a standard Gibbs sampler
for normal regression (Gelman et al. 1995) to estimate the slope of the regression
between tenure and arrival, q, and the variance in tenure at a given arrival date, k2. In
this sample, the correlation was weak, k2 ∼ �2

b , and we used the latter in subsequent
calculations.

Fitting the Model to Seal Censuses

As illustrated earlier (Fig. 1, 2), specifying distributions of arrival and tenure allows
a census curve C to be predicted, given six parameters (Table 1). We need the inverse
though: We want to estimate the six parameters given observed censuses, X. To
accomplish this, we sought the parameters that created the closest fit of all predicted
censuses C to the observations X, where closeness of fit was defined by likelihood:
the probability of observing X given C. We adopted a Bayesian approach, using the
likelihood function to estimate posterior distributions for each of the parameters.

Likelihood

The probability of an observed count X(T) on date T is given by a Poisson distri-
bution with mean C(T), where C(T) is the model’s predicted count on date T given
the six model parameters (Equation A1 in the Appendix). The logarithm of this like-
lihood was summed across all dates on which censuses were carried out in one season.
This total log-likelihood is thus a function of the six model parameters as well as the
observed counts, and it gives a measure of how well any set of parameters describe the
data. In a maximum-likelihood approach, the parameters producing the highest like-
lihood possible are located. A Bayesian approach differs by seeking not just the one
best parameter set but all parameter combinations that fit the data reasonably well,
where “reasonable” has a quantitative grounding in probability. Before embarking
on the Bayesian calculation, we tested the model with standard numerical searches to
locate optimum parameter values, using the optim function in the computer language
R and its default Nelder–Mead algorithm (Bates et al. 2004).

With six parameters, however, the model is overparameterized: Two parameters
are redundant because of the parameter interactions described earlier (N and �b; q
and � b). This was evident during optimizations in which all six parameters were
allowed to vary. The two redundant pairs were highly correlated, and the likelihood
surface was flat over a wide range of each. By fixing two of the parameters, mean
tenure �b and its standard deviation � b, the optimization worked consistently and
had repeatable best estimates for the remaining four parameters. Fixing parameter
values, however, ignores uncertainty in our knowledge of those parameters.

In a Bayesian framework, uncertainty in the redundant parameters can be handled
using prior probability distributions based on independent quantitative information.
As described above, normal posterior distributions for mean tenure �b and its standard
deviation � b were estimated from marked females, and these became priors in model
fitting. This means that the likelihood calculation for these two parameters must be
expanded: It includes the Poisson likelihood multiplied by the prior probability (see
the Appendix). This allows us to set the two extra parameters using independent data,
so the model can be fitted, but also incorporates uncertainty in this prior knowledge.
For the other four parameters, we assumed flat priors over all plausible values (see
the Appendix for parameter limits).
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A Gibbs Sampler and Credible Intervals

Instead of the optimization method, we employed a Gibbs sampler to generate
model fits, allowing the priors to be incorporated and statistical confidence in all
parameters to be calculated. The Gibbs sampler makes use of the same likelihood
formulation given above, but instead of simply identifying the optimum, it samples
the surface of the posterior distribution near the optimum. Its output is a chain of
parameter values that represent a sample from the joint posterior distribution of the
parameters. In all seasons, the sampler converged in 250–500 steps, and we used the
parameter combinations from step 1,001 to 5,000. For each parameter, the mean plus
2.5th and 97.5th percentiles were taken from these 4,000 values. The mean values
represent our single best parameter estimates, while the percentiles reveal conf-
idence in each parameter, known in Bayesian analysis as credible intervals. These
intervals incorporate uncertainty in the model, counting error, plus uncertainty in
prior knowledge of �b and � b. Details of the sampler are given in the Appendix.

A Simpler Census Model

The model of Rothery and McCann (1987), described in Equation (6), was also
fitted. It has three parameters, N, �a, and �a. To compare models, we used the
Deviance Information Criterion (DIC), a measure of fit analogous to the Akaike
Information Criterion that is easy to apply in a Bayesian framework (Burnham
and Anderson 2002). DIC uses the log-likelihood of every parameter combina-
tion evaluated in the Gibbs sampler and penalizes for the number of parameters.
Spiegelhalter et al. (2002) offer a detailed presentation, and the Wikipedia article
(http://en.wikipedia.org/wiki/Deviance information criterion) provides a convenient
formula.

Census Years

We have census data for every year from 1975 to 2007 at the Año Nuevo mainland,
and we fit the model using all censuses between 19 December and 10 March in all
but 3 yr. Censuses outside those dates often include nonbreeding or juvenile females.
The model was not fitted in 1975 and 1976 because there were just one and three
females respectively in those years. In 1983 a key assumption of the model was
violated because a big storm at peak season inundated the Año Nuevo Island harem,
and many females who had already pupped there moved to the mainland (Le Boeuf
and Condit 1983). To complete the table of estimates, we calculated the total 1983
breeding population using a multiplier for individual counts prior to the storm on
27 January (unpublished data).

Rarefaction

In some seasons, fifty or more counts were available and in others as few as eight.
To examine how the number of counts affected estimates, we rarefied samples. The
interval from 1 January to 1 March was divided into five (or seven) equal sections,
and one, two, or three censuses were chosen at random from each section. This
produced five to fifteen well-spaced censuses to which we refit the census model. We
examined rarefied data in 1980, 1984, and 1995, three seasons that had more than
forty censuses.
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RESULTS

Breeding Tenure

The Gibbs sampler estimated mean breeding tenure in the sample of 191 closely
observed females as �b = 31.06 d, with a standard deviation � b = 0.1212�b. The
Gibbs chains also produced standard errors of those estimates, 0.271 and 0.193 d
respectively (simply the standard deviation of each Gibbs chain). These parameters
defined Gaussian prior distributions for �b and � b used in model fitting (Table 1).
Both arrival date and breeding tenure were unimodal and symmetrically distributed,
and there was a negative but nonsignificant correlation between them, q = −0.05,
that is, tenure was 0.05 d shorter for every 1-d delay in arrival. Garcı́a-Aguilar (2004)
observed a mean tenure of 31 d and a weak negative correlation between arrival and
tenure on a Mexican rookery.1

Breeding Season Censuses

The number of breeding females on the rookery followed a unimodal curve with
a broad peak from 27 January to 2 February, and the general shape was maintained
despite large variation in the peak count (Fig. 3). In 1978, the census rose abruptly
compared to its descent. In other years, the census declined more rapidly than it
ascended, although the difference is subtle and barely detectable by visual inspection.
Consider 2004 as an example: The peak count as estimated from the model was on
29 January; the observed count 25 d earlier, on 4 January, was 425, but 25 d later
(23 February), it was only 234.

Fits of the Model

The model produced a close fit to the census data throughout each season (Fig. 3).
In nearly all years, the fitted parameters were consistent, predicting a census peak
between 29 January and 1 February (Fig. 3, Table 2). In some years, discrepancies
between observed and predicted counts were notable, for instance in 1993 and 1998,
especially near the peak. Counts were higher than the model’s prediction as often as
they were lower, though. Since 2001, the model predicted every census closely with
as few as eight censuses.

The peak census was eighty-three in 1978, and the estimated total female popula-
tion was only eighty-one. This apparent anomaly is due to fluctuations in the counts:
There was just one count of eighty-three, and most counts near the peak were eighty
to eighty-one, suggesting that eighty-three was either an error or included two to
three females that appeared only briefly. Because females arrived synchronously that
year (the lowest SD of arrival of any season), departures were barely underway by 1
February and there was no overlap between arrival and departure (Fig. 3). Similarly,
1993 had a peak count higher than the estimated population, but the peak was a
substantial outlier (Fig. 3).

1 Personal communication from M. C. Garcı́a-Aguilar, Centro de Investigación Cientı́fica y de Ed-
ucación Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana–Ensenada, Código Postal 22860,
Apdo. Postal 360, Ensenada, B.C. Mexico, August 2006.
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Figure 3. The census model’s predicted daily counts, calculated from the mean of each
parameters’ posterior distribution, compared to observed counts of breeding female elephant
seals at the Año Nuevo mainland. The general shape and timing of the census curve was
maintained from year-to-year despite twentyfold variation in colony size (note variation in
scale of the vertical axis). The census model handled the entire range and was able to pick
up small differences in shape, such as the abrupt rise in 1978. Seasons were chosen (eighteen
of the thirty we tested) to illustrate both consistent data and good fits (i.e., 1984, 2004) as
well as erratic data with poorer fits (i.e., 1993, 1998). Observed censuses (points) and best
fits of the model (solid curves). Cumulative arrival (dashed) and departure (dotted) curves as
estimated by the model. Vertical lines are at 1 January, 1 February, and 1 March.
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Table 2. Size of the breeding colony of female elephant seals at the Año Nuevo mainland, 1975–2007.
N (number of breeding females), mean (�a), and standard deviation (� a) of arrival date (in January), and the
slope of the correlation between arrival date and breeding tenure (q) were estimated from the model (mean of
posterior distributions); 95% credible intervals (CI) for N are shown (limits for other parameters were calculated
but are not shown). The model also produced an estimate for the peak female count during each season along
with the date of that count, and these are compared to those observed. The number of censuses throughout the
breeding season and during peak season (17 January–4 February) is given. The 1983 estimate was not modeled
but calculated using correction factors applied to counts before the storm on 27 January.

Abundance Arrival (Jan) Peak date Peak census No. censusesCorrelation
Year N CI Mean SD arr.–tenure Obs. Pred. Obs. Pred. Total Peak

1975 1 not modeled
1976 3 not modeled
1977 16 14–18 13.4 9.9 −0.262 26 Jan 30 Jan 16 15 42 16
1978 81 78–85 16.5 5.6 0.159 02 Feb 30 Jan 83 80 53 19
1979 100 96–105 16.2 10.5 −0.265 31 Jan 02 Feb 93 90 46 19
1980 155 150–161 15.5 9.0 −0.146 31 Jan 31 Jan 149 143 45 19
1981 296 287–306 17.0 7.2 −0.153 29 Jan 01 Feb 343 287 32 13
1982 355 345–366 16.1 8.6 −0.070 29 Jan 31 Jan 331 328 51 16
1983 503 383–624 46 15
1984 760 742–778 15.6 8.9 −0.036 02 Feb 31 Jan 708 691 37 13
1985 718 702–736 16.4 9.3 −0.145 30 Jan 01 Feb 669 656 39 14
1986 850 832–869 15.7 8.4 −0.017 02 Feb 31 Jan 818 788 40 16
1987 818 802–835 16.7 9.0 −0.104 31 Jan 01 Feb 774 751 57 18
1988 985 965–1,006 16.1 9.2 −0.094 01 Feb 01 Feb 911 892 57 17
1989 1,115 1,094–1,137 14.3 9.6 −0.134 27 Jan 30 Jan 1,063 1,005 53 17
1990 1,208 1,187–1,233 13.5 10.3 −0.137 27 Jan 29 Jan 1,094 1,064 61 16
1991 1,469 1,445–1,496 14.2 8.9 −0.154 31 Jan 30 Jan 1,373 1,360 55 15
1992 1,675 1,641–1,721 13.6 11.5 −0.240 27 Jan 30 Jan 1,504 1,444 47 16
1993 1,665 1,632–1,701 12.9 10.1 −0.147 28 Jan 29 Jan 1,672 1,473 45 13
1994 1,665 1,632–1,701 14.8 10.7 −0.266 03 Feb 31 Jan 1,554 1,484 50 16
1995 2,093 2,056–2,135 16.0 11.3 −0.315 29 Jan 02 Feb 1,922 1,849 40 10
1996 1,821 1,782–1,865 15.1 9.8 −0.124 03 Feb 31 Jan 1,543 1,633 22 4
1997 2,063 2,007–2,117 15.6 10.3 −0.197 28 Jan 01 Feb 1,868 1,832 9 2
1998 2,009 1,960–2,053 17.5 11.8 −0.310 30 Jan 03 Feb 1,535 1,742 18 4
1999 1,865 1,809–1,928 17.7 11.3 −0.358 29 Jan 04 Feb 1,718 1,662 12 2
2000 1,885 1,833–1,933 17.0 10.7 −0.199 01 Feb 02 Feb 1,630 1,653 18 6
2002 1,976 1,913–2,041 13.2 10.4 −0.165 29 Jan 29 Jan 1,738 1,740 12 1
2003 2,162 2,101–2,228 11.7 10.0 −0.159 28 Jan 28 Jan 1,902 1,933 10 2
2004 2,012 1,963–2,059 12.3 10.7 −0.226 30 Jan 29 Jan 1,778 1,776 19 5
2005 2,032 1,973–2,094 13.2 10.8 −0.234 29 Jan 29 Jan 1,795 1,788 9 2
2006 2,115 2,062–2,173 12.7 10.4 −0.174 29 Jan 29 Jan 1,848 1,868 10 2
2007 1,985 1,929–2,047 13.6 9.9 −0.201 26 Jan 30 Jan 1,760 1,795 8 2

Estimated Colony Size

In 1977, the first year for which the model was fitted, only sixteen females were
counted at the peak of the season, and the model estimated sixteen for the total colony
size. In 2003 the peak count was over 1,900 females and the total colony size over
2,200 (Table 2). Credible intervals on estimated colony size were ±2%–4% in most
years and only above 4% in a few years (Table 2). Uncertainty in the breeding tenure
generally caused less than half the uncertainty in colony size. Ignoring it, credible
intervals were ±1%–3%.

Estimated Arrival

In the late 1970s and early 1980s, the mean arrival date was 15–17 January, but
it crept forward and after 2000 was 12–15 January. Credible intervals for mean



848 MARINE MAMMAL SCIENCE, VOL. 23, NO. 4, 2007

arrival were ±0.3–0.6 d in most years. In 1978 female arrival was most abrupt,
visually evident in Figure 3. Correspondingly, the SD of arrival date in 1978 was
5.6 d (credible intervals ±0.7 d). In most years, the SD was 9–11 d (credible limits
±0.2–0.6 d).

Estimated Correlation Between Arrival and Breeding Tenure

The fitted slope q of the correlation was usually negative, often between −0.10
and −0.25 (Table 2), and in most years, credible limits excluded zero. These are
slightly steeper than the estimate of −0.05 based on marked females. The negative
correlation was necessary to accommodate the tendency for censuses to decline more
rapidly than they rose, as described above for 2004. In 1978 there was a positive
correlation: Late-arriving females remained longer, and the census clearly declined
more slowly than it ascended (Fig. 3).

Estimated Breeding Tenure and Its Standard Deviation

In all years, estimated values of �b and � b were dominated by the prior distribu-
tions: Credible intervals on each broadly overlapped the independent of estimates of
�b = 31.06 and � b = 0.1212�b. This is what should result given that these two
parameters are redundant to the model: Census data alone provide little information
about tenure, so the priors dominate.

Overlap in Arrival and Departure

The total colony size, N, exceeded the estimated peak census by 8%–16% in most
years, meaning there was 8%–16% overlap between arrival and departure. Three early
years had less overlap, especially 1978, where the estimated peak was only one less than
N (eighty vs. eighty-one; the observed peak, eighty-three, was an outlier). The degree
of overlap was strongly associated with the variance in arrival dates. When �a =
9, the overlap was only 8%, but at its broadest �a = 12, overlap was 16%. Since
1992 the standard deviation in arrival was always >10 d and the overlap between
arrival and departure >10%.

The Model of Rothery and McCann

In all 30 yr, the full model was a better fit (higher DIC) than the Rothery and
McCann (1987) model in which every female has the same breeding tenure. This
demonstrates that the correlation parameter, which was usually negative, improved
the fit of the model. In nearly all years, arrival according to the full model was later
and more variable than according to the simple model (mean arrival differed by half
a day, with a standard deviation differing by 0.5–1 d). The two models, however,
produced nearly identical estimates of population size, differing by <2% in most
years and never by >3%.

Rarefaction

With random subsets of censuses spaced evenly during January and February,
the estimated breeding population was accurate with as few as five censuses. For
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instance, the estimate from all thirty-seven censuses in 1984 was 754 females; with
five different random sets of five censuses, the estimates were 750, 752, 758, 770, and
797. As expected, the variance of the estimates (calculated with the Gibbs sampler)
was inversely related to the number of censuses. In the 1984 example, the coefficient
of variation was 2.5% with five censuses but 0.9% with thirty-seven censuses.

DISCUSSION

Synchrony in breeding is commonly measured using the variance of reproductive
onset (Gochfield 1980), but breeding tenure and departure also influence synchrony.
If tenure is much longer than the variation in onset, synchrony is high because all
breeders will be present together; likewise, departure can be more or less synchronous
than arrival. We present a framework for quantifying the interaction of all sources of
asynchrony and describing the resulting population of a colony through time. The
previous model of colony size under asynchrony (Rothery and McCann 1987) covered
a specific case, where departure matches arrival, and can produce only a symmetric
census curve.

Our modeling approach allows colony size and arrival behavior to be estimated from
counts alone. It can describe asymmetry in a census curve by fitting both the variance
in arrival date and the correlation between arrival and breeding tenure. Independent
estimates of breeding tenure as well as its variance must be available. Counts alone
cannot yield estimates of both population size and tenure, and uncertainty in the
estimate of tenure produces error in the estimate of colony size, a fact that has been
disregarded in previous modeling attempts.

The fact that asynchrony is relevant to estimates of colony size appears to be
frequently ignored. In temperate breeding birds, this is probably because the length
of the individual breeding period substantially exceeds the SD in initiation dates (SD
typically <12 d; see Burger 1979, Brown and Brown 1987, Murphy and Schauer
1996), and colony size can be estimated by simply counting nests. But in tropical
birds, the SD of hatching dates can be up to 40 d (Reville 1988, Webster 1994).
At another extreme, individual mayflies breed for 30 min (Sweeney and Vannote
1982) while the whole population breeds over 12–16 d. In all cases, our model could
precisely define the overlap among breeders and determine whether all are present
together. Nevertheless, the only cases we know where careful modeling has been used
to assess the impact of asynchrony on population estimates are in pinnipeds (Rothery
and McCann 1987, Trites 1992, Slip and Burton 1999) and insects (Zonneveld 1991).
One very different case that poses the same problem is flower production. For example,
Aizen (2001) showed daily flower counts following a bell-shaped distribution over
36 d, while individual flowers lasted 3.65 ± 0.21 d. From these data, we could
estimate flower-opening date (arrival) and total flower production (colony size) using
our model.

Galimberti and Sanvito (2001) tested the simpler model of Rothery and McCann
(1987) and concluded that it predicted colony size of elephant seals well. The simpler
version does not incorporate variation in the breeding tenure nor correlation between
tenure and arrival. The fact that it is still adequate for estimating elephant seal abun-
dance appears to be fortuitous: Modest variation in breeding tenure is counteracted
by a tendency for late arriving females to spend less time in the colony. The analytical
formulation for the variance in departure dates in Equation (7) shows exactly how the
two terms counteract. Departure would be more variable than arrival due to variance
in breeding tenure. In elephant seals, the SD in arrival is about 10–11 d, and the SD
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in tenure is about 4 d, so the SD in departure would be 11–12 d in the absence of any
correlation between tenure and arrival. But the negative covariance term diminishes
the SD in departure: If the correlation were −0.08, it would just balance the vari-
ance from tenure, so that departure and arrival would have identical variances. The
correlation was generally stronger than this so that seals departed more rapidly than
they arrived, which is why the simpler model was a poorer fit.

Errors in our female counts near peak season were evident in many years, not sur-
prising given the size and density of the largest harems (700 females in 5,000 m2).
We believe that the model describes the female census accurately, and that the dis-
crepancies are unbiased counting errors; indeed, the model reveals these errors. The
large number of counts in certain years served to overcome these occasional errors.
In the 3 yr tested, predictions based on five well-spaced counts produced accurate
estimates of colony size and arrival time. Barring large errors, we conclude that five
to seven counts are sufficient; the risk with few counts, of course, is that a single large
error has a big impact.

Other errors could result if the model’s assumptions were faulty. We describe
the arrival date and breeding tenure of female elephant seals as normally distributed,
largely because observations of individuals support this. Symmetrical and bell-shaped
reproductive onset has been described in squirrels (O’Donoghue and Bouton 1995),
ungulates (Sinclair et al. 2000), many birds (Burger 1979, Wiklund 1984, Brown
and Brown 1987, Webster 1994), mayflies (Sweeney and Vannote 1982), and plants
(Rabinowitz et al. 1981), and the normal distribution has been used in models for
birds (Birkhead and Biggins 1987) and trees (Bronstein et al. 1990). In butterflies,
Zonneveld (1991) justified a normal distribution of emergence dates but used a
logistic for mathematical convenience. Skewed distributions of reproductive onset,
though, are seen in birds (Burger 1979, Brown and Brown 1987, Murphy and Schauer
1996, Galetto et al. 2000) and plants (Rabinowitz et al. 1981, Malo 2002). In gray
seals, Halichoerus grypus (Boness et al. 1995), and northern fur seals, Callorhinus ursinus
(Trites 1992), the distribution of birth dates was right skewed. The model we pre-
sented, though, can accommodate any distributional form and could be tested where
onset is skewed. Galimberti and Sanvito (2001) noted a different discrepancy in the
arrival distribution of southern elephant seals: fatter tails than a normal distribution
accommodates. We looked closely at the earliest and latest arrivals at Año Nuevo,
and it appears that a few females arrive earlier than a normal distribution predicts
but that the latest arrivals are accommodated. We have not evaluated how slight
nonnormality would impact estimates from the model.

We also based our estimates on the assumption that breeding tenure in female
elephant seals is consistent from year to year. Breeding tenure is crucial because
there is a linear interaction in the model between tenure and estimated abundance:
Overestimating tenure by 10% will cause a 10% underestimate of N, etc. (Galimberti
and Sanvito 2001). Evidence from marked females suggested that a mean breeding
tenure of 31 d held in four different years, and Garcı́a-Aguilar (2004) observed marked
females in a harem 1,000 km to the south in Mexico and also found a mean tenure
of 31 d in two different years. Moreover, our estimates of N incorporate uncertainty
in our knowledge of breeding tenure. But other colonies, particularly new ones with
only a few females, may differ in mean tenure, and we must remain cognizant of this
as a source of error.

In many species of animals or plants, documenting the tenure—whether breeding
tenure in a colony of seabirds or flower life span on a tree—may be difficult and time-
consuming. An obvious example would be where censuses are made from airplanes,
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so nothing is known about individual behavior. It would be useful to develop a
tool for estimating breeding population that circumvented the need for independent
knowledge about breeding tenure. Our model could work without knowing the
distribution of breeding tenure, as long as either arrival or departure distributions
are known, and these might be easier to estimate in some species. Perhaps even less
information is necessary; for instance, the date of the first departure might add enough
information to allow the full model to be fit. In the meantime, the model can be
applied to any situation, regardless of the degree of asynchrony and symmetry, as long
as a few counts are available throughout the breeding period and given independent
evidence on the length of time individuals remain in a colony.
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APPENDIX: A GIBBS SAMPLER FOR FITTING THE CENSUS MODEL

The Gibbs sampler is based on the likelihood of observing X animals given the
model’s prediction, C:

P [X|C (�)] = Pois(X, mean = C ) = C X

C !
e −c . (A1)

P is the conditional probability of observing X given C because C is calculated from
the six model parameters, here designated � (Equation 1, Table 1), P is conditional
on C(�). The log of the likelihood for all counts (in one season) is the sum of the log
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likelihoods for each day:

L =
∑

T
ln P [XT |CT (�)]. (A2)

To bound the parameter search, the likelihood function was set to 0 when a pa-
rameter fell outside predefined limits. Except for the correlation parameter, q, all
parameters were bounded below by 0 but had no upper bound; q was constrained to
the range (−0.51, 0.32), chosen because those values prevent the expected tenure for
any arrival date from being <15 or >45 d.

The tenure parameters, �b and �2
b , were constrained by tight priors, and the

likelihood of Equation A2 must be multiplied by the priors for those two parameters
(steps 6 and 7 below). For other parameters, the prior was assumed to be flat, apart
from upper and lower bounds. We had no justification for prior information on four of
the parameters, and the Metropolis algorithm does not require it; because the Gibbs
chains converged, we can be secure that the estimated posterior distributions were
proper.

The Gibbs sampler proceeds as follows.

1. Choose initial parameter values �[1]. Initial values are arbitrary as long as the
likelihood can be calculated. In practice, we used these initial values: population
size, N[1] = 1.14Xmax (where Xmax is the maximum count); mean arrival, �[1]

a =
43 (where day 1 = 1 December, so day 43 is 12 January); SD of arrival,
�[1]

a = 11 ; the slope of the correlation between tenure and arrival, q[1] = −0.17;
mean tenure, �[1]

b = 31.06 and its standard deviation, � b = 0.1212�b. The
superscript [1] indicates that these values are step 1 in the Gibbs chain.

2. Update N using a Metropolis step (Gelman et al. 1995).
a. Choose a candidate N[test] by making a random draw from a normal distribution

with mean N[1] and standard deviation S [1]
N . SN is called the step size; it requires

an elaborate calculation, described below.
b. Define �[1] = (N[1], �[1]

a , �[1]
a , q [1], �[1]

b , �[1]
b ,) , the six parameter values at step

1, and �[test] = (N[test], �[1]
a , �[1]

a , q [1], �[1]
b , �[1]

b ,) . That is, five parameters are
held at their current values while the candidate N is tested.

c. Let L [1] = ∑
T ln P (XT |CT (�[1])) , the likelihood of the data given parameters

�[1]; L [ test] = ∑
T ln P (XT |CT (�[test])) , the likelihood of the data given �[test].

d. Define �L = e L [test]−L [1]
, the likelihood ratio, and draw a random number, r,

between 0 and 1. If r < �L, then accept N[test] and set N[2] = N[test]; otherwise
reject it and set N[2] = N[1]. This means that the new value of N is always
accepted if it improves the likelihood but can also be accepted if it reduces the
likelihood by a small enough amount.

3. Update �a using the same algorithm but choosing a candidate �[test]
a and

deciding to accept it or reject it based on the likelihoods of

� = (N[2], �[1]
a , �[1]

a , q [1], �[1]
b , �[1]

b ,) and

�[test] = (N[2], �[test]
a , �[1]

a , q [1], �[1]
b , �[1]

b ,) .

4. Update �a with the same algorithm.
5. Update q with the same algorithm.
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6. Update �b, again with the Metropolis algorithm, however, the likelihood formu-
lation differs because there is a prior probability. Define the prior log-likelihood
as L [1]

p = ln[Norm(�[1]
b , mean = 31.06, SD = 0.271)], which is the log of the

probability of observing �[1]
b given the prior normal density. The log-likelihood

of the data given �[1]
b comes from Equation A2; call it LD. The total log-

likelihood of �[1]
b is L [1] = L D + L p . The Metropolis step is conditioned on

L[1] and a log-likelihood L[test] calculated in the same way for the randomly
chosen candidate �[test]

b .
7. Update � b using the Metropolis step, including the prior probability

Norm[�[1]
b , mean = 0.1212, SD = 0.0062] in the likelihood.

8. Return to step 2 and update N[2] to N[3], etc.

The loop of steps 2–7 was repeated 5,000 times for each season.
The step size S for each parameter is critical for efficient chains. If it is too large,

many steps are rejected and convergence is slow. On the other hand, steps that are
too small are dangerous: Most steps are accepted and the parameter space may not
be adequately covered. The optimal acceptance rate is 25%, given six parameters
(Gelman et al. 1995). By adjusting step-size based on each acceptance, it is possible
to assure any acceptance rate desired.2 For each parameter, arbitrarily assign an initial
step-size S[1], and let � be a number just greater than 1. At each step through the
loop, adjust the step size to S[2] = �3S[1] if the new parameter value is accepted but to
S[2] = �−1S[1] if it is rejected; the acceptance rate will converge on 25%. In practice,
we used � = 1.01, and initial step sizes for parameters � = (N, �a, �a, q, �b, � b)
were S = (100, 4, 1, 0.05, 1, 0.01).

Step-size adjustment was stopped at the end of the burn-in (1,000 steps), as sug-
gested by Gilks et al. (1998); the mean step of the previous 100 runs (901–1,000)
was held for the rest of the Monte Carlo chain. The final post-burn-in acceptance
rate was >0.16 and <0.35 (most 0.22–0.28), and chains were graphed to check for
adequate mixing and convergence. The distribution of each parameter’s output was
evaluated, and all were bell-shaped with a strong mode.

2 Personal communication from H. Muller-Landau, 100 Ecology Building, University of Minnesota,
1987 Upper Buford Circle, St Paul, MN 55108, April 2006.


