
THE DISTRIBUTION OF DEMERSAL FISHES OVER 

HETEROGENOUS SEAFLOOR HABITATS: AN APPLICATION OF 

LANDSCAPE ECOLOGY TO VIDEO IMAGERY COLLECTED IN A 

CENTRAL CALIFORNIA STATE MARINE CONSERVATION AREA  

 _______________ 

A Thesis 

Presented to the 

Faculty of the  

Division of Science and Environmental Policy 

California State University Monterey Bay 

 _______________ 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

in 

Coastal and Watershed Science and Policy 

 _______________ 

By 

Ashley Knight 

Fall 2011



 

 

CALIFORNIA STATE UNIVERSITY MONTEREY BAY 

The Undersigned Faculty Committee Approves the  

Thesis of Ashley Knight: 

THE DISTRIBUTION OF DEMERSAL FISHES OVER HETEROGENOUS 

SEAFLOOR HABITATS: AN APPLICATION OF LANDSCAPE ECOLOGY 

TO VIDEO IMAGERY COLLECTED IN A CENTRAL CALIFORNIA STATE 

MARINE CONSERVATION AREA 

 _____________________________________________ 

James Lindholm, Chair 

California State University Monterey Bay 

 _____________________________________________ 

Fred Watson 

California State University Monterey Bay 

 

 _____________________________________________ 

Andrew DeVogelaere 

Monterey Bay National Marine Sanctuary, Monterey 

 _____________________________________________ 

 Marsha Moroh, Dean 

 College of Science, Media Arts, and Technology 

 ______________________________  

 Approval Date



 

 

iii 

Copyright © 2011 

by 

Ashley Knight 

All Rights Reserved 

 



 

 

iv 

For all the sea has to teach us… and all the fun in learning it. 

 



 

 

v 

ABSTRACT 

The distribution of demersal fishes over heterogeneous seafloor 

habitats: An application of landscape ecology to video imagery 

collected in a Central California State Marine Conservation Area 

by 

Ashley Knight 

Master of Science in Coastal and Watershed Science and Policy 

California State University Monterey Bay, 2011 

 

Using landscape ecology approaches, this study investigated the importance of 

structural patterning in the seafloor landscape and the scales at which demersal fishes 

associate with different habitats. The following document describes the project in three parts: 

1) The circumstances surrounding the management of the study site and the methodological 

approaches used; 2) The analytical framework and results; 3) Potential applications of these 

results in management.  

By describing the landscapes across which demersal fish are distributed at the Piedras 

Blancas State Marine Conservation Area (PBSMCA), within the Monterey Bay National 

Marine Sanctuary, we evaluated fish-habitat associations in the context of other central 

California deepwater studies. Quantifying and monitoring the distribution of fishes over the 

habitats at this site is critical to understanding how this marine protected area (MPA) may 

function as a conservation measure.  

Imagery surveys are ideal for collecting data on seafloor habitats and observing fishes 

in these habitats; these data are becoming an increasingly important contribution to marine 

conservation management. We examined imagery collected at the PBSMCA with a towed 

camera system. Surveys were conducted in 2007 and 2008 in water depths ranging from 30-

120 m. Video imagery gathered with the sled was viewed as a set of non-overlapping video 

quadrats (frames). We compared generalized linear models to estimate the probability of 

response (detection) of selected demersal fish groups to a number of habitat variables, 

assuming a uniform probability of detection. 

Results suggested that, for all fish groupings, there is evidence that seafloor substrate 

plays a very strong role in determining distributions. Depth also played an important role, 

while biogenic structure and soft-sediment bedforms were rarely of importance to the 

distributions. Our results are consistent for the most part with fish distribution studies 

conducted at other sites within the central California region.  

These results highlight the importance of using imagery to collect monitoring data 

about marine landscapes. Use of a simple, low-cost camera system enabled us to address 

complex ecological questions about demersal fish-habitat associations across a 

heterogeneous landscape and provided useful results in the form of baseline data to MPA 

managers and site characterization to the Monterey Bay National Marine Sanctuary.  
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CHAPTER 1 

THE IMPORTANCE OF IMAGERY DATA AND 

LANDSCAPE MODELING IN ECOSYSTEM 

MONITORING AND MANAGEMENT 

Challenges in marine resource conservation such as degraded ecosystems, 

declining resources (Worm 2009), and limited funding have increased the need for 

management in near-shore marine habitats. Traditionally, in an attempt to understand and 

prevent overexploitation of resources, managers have used single-species management 

approaches such as stock assessments and restrictions or quotas (NRC 2001; Preikshot 

and Pauly 2005). However, shortcomings in these methods have redirected management 

towards ecosystem-based approaches, which focus on monitoring relationships among 

populations, habitats, and human uses of the ecosystem (Pauly et al. 2002). Ecosystem 

management approaches such as marine protected areas (MPAs) and essential fish habitat 

closures have gained widespread recognition in coastal science and policy (NRC 2001) 

and have been implemented by federal, state, and local governments at a variety of 

scales.  

MANAGEMENT BACKGROUND: STATE AND FEDERAL PROTECTED AREAS ON 

CALIFORNIA’S CENTRAL COAST 

Along California’s 1,350-km coastline, local, state, and federal managed areas are 

frequently overlapping. Although this overlap can sometimes cause ambiguity over 

governance and responsibility (Crowder et al. 2006) it can also foster collaboration 

among agencies and create a more effective management network (Airame et al. 2003). 

In California, the National Marine Sanctuary Program, under the National Oceanic and 

Atmospheric Administration, has designated four federal marine sanctuaries spanning 

over 600 km of California’s coastline. A state-wide network of marine reserves, 

conservation areas, and parks are being implemented along the entire coast by the 

California Department of Fish and Game (CDFG). Also, county and city agencies have 
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established and managed local beaches, tidepools, and parks along their shores for 

decades (Brown 2001). Ecologically, there is a need to identify habitat-associated groups 

and guilds of fishes that persist along the entire coastline (Yoklavich et al. 2000). An 

understanding of these associations at various locations along the west coast of North 

America will be valuable for predicting community response to disturbances, for 

applications to resource surveys, and for identifying the components of essential fish 

habitats (Yoklavich et al. 2000).  

Protection of fish habitats using ecosystem-based measures provides a number of 

conservation “insurance” benefits to allow for unforeseen natural and anthropogenic 

catastrophes, increases in biodiversity, and spillover of stocks into non-protected (fished) 

areas (NRC 2001; Palumbi 2001). Networks of protected areas provide additional 

ecological benefits for larval dispersal, genetic diversity, and for migratory species 

(Palumbi 2003). Understanding the degree to which fish stocks benefit from these 

ecosystem-based conservation measures requires monitoring of closed areas and 

comparison to actively fished areas.  

The California Marine Life Protection Act of 1999 (MLPA) initiated a network of 

MPAs along the entire coast. After two failed implementation attempts, the Resources 

Legacy Fund stepped in to partner with the CDFG. This partnership facilitated the MLPA 

Initiative to involve stakeholders statewide and provided needed assistance to the CDFG. 

In September 2007, the MPAs in the Central Coast Region (CCR) of the network were 

implemented. This was the first of five regional networks to be implemented in the 

combined coast-wide network. Protected areas in the Central Coast Region include 

recreation-based marine parks, strict no-take marine reserves, and conservation areas, 

where limited take of particular, commercially-valuable species is allowed (CDFG 2007).  

Obtaining baseline data for these MPAs upon establishment is a critical objective 

of the MLPA Master Plan for MPAs (CDFG 2007), a document guiding the designation, 

implementation, monitoring, and management of the CCR and future networks. These 

data are collected to describe the habitats and biota inside and adjacent to an MPA at the 

time of implementation. Comparison of baseline data with monitoring data gathered in 

subsequent years is fundamental to measuring the success of these protected areas. In the 

CCR, intertidal and shallow-subtidal (to 30 m) baseline and monitoring surveys are 



 

 

3 

primarily conducted by the Partnership for Interdisciplinary Study of Coastal Oceans 

(PISCO) using SCUBA and intertidal transecting techniques. Deepwater (30 - 365 m) 

data collection was conducted by a state-funded monitoring program using the human-

occupied submersible Delta to collect video and photographic imagery. However, 

funding for monitoring was insufficient to collect data in each of the 29 MPAs. This left 

critical gaps in a data set to be used for future assessment of the efficacy of MPAs.  

Many of the CCR MPAs fall within the boundaries of the Monterey Bay National 

Marine Sanctuary (MBNMS), a federally protected area designated in 1992. The 

MBNMS encompasses over 8,000 km
2
 off the coast from San Francisco Bay to San 

Simeon and extends 48 km offshore. The large area of the MBNMS includes a variety of 

habitat types and ecosystems along the continental shelf as well as in deep submarine 

canyons. The area along the shelf - including California state waters - is an economically 

valuable area with regards to fisheries, and the “site characterization” of this area is a 

major objective of the MBNMS Management Plan (NOAA 2009). Site characterization 

includes an assessment of the diversity of habitats and biota within the sanctuary (NOAA 

2009). Through this study, we have collected MBNMS characterization data to provide 

baseline MPA information at a study site encompassed by both state and federal 

management areas, filling one data gap in the CCR MPA network.  

APPLIED RESEARCH: CONTRIBUTION OF IMAGERY DATA TO 

CONSERVATION MANAGEMENT 

Imagery surveys of the seafloor are becoming an increasingly important 

contribution to marine conservation monitoring and management. Although projects 

directed at gathering seafloor imagery are often burdened by high operational costs and 

restricted to a narrow window of weather and sea conditions, the non-extractive nature of 

imagery collection (as opposed to the traditional trawl or hook-and-line sampling 

techniques) compliments well with monitoring for conservation and management goals.  

In a collaborative partnership between the Institute for Applied Marine Ecology at 

CSU Monterey Bay (IfAME) and the MBNMS, a “towfish” camera sled system (Figure 

1), owned and operated by the National Marine Sanctuary Program, was used to survey 

and characterize the continental shelf between depths of 20 and 250 m. The “sled” is a 

simple video camera system capable of collecting valuable imagery data. Its simple 
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design and operation gives it the potential to cover a considerably large area in a 

relatively short period of time. In comparison to other imagery platforms such as 

remotely operated vehicles (ROVs) and human-occupied submersibles, camera sleds are 

relatively inexpensive to operate and maintain. 

 

Figure 1. The “towfish” camera sled system consists of a single video camera, 10 cm 

sizing lasers, and navigational equipment (including depth and altitude sensors). 

The sled is tethered to the support vessel with a 250 m coaxial umbilical and winch 

wire. 

To assist the state in monitoring MPAs, surveys conducted during partnership 

research cruises combined MBNMS site characterization efforts with MPA baseline data 

collection. These surveys were conducted from 2007-2011 and targeted areas of interest 

to the MBNMS as well as in overlapping, recently-designated state MPAs that were not 

included in California’s state monitoring program. The goals of these surveys were to 

collect imagery on the seafloor habitats, demersal fishes, and invertebrate communities in 

these areas.  
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The Piedras Blancas State Marine Conservation Area is within the southernmost 

boundary of MBNMS and was surveyed with the sanctuary’s camera sled in 2007, 2008, 

and 2011. These three benchmarks offer a significant contribution to the monitoring of 

the CCR Network and data from these surveys will be incorporated in the 2012 Five-Year 

Review of the CCR MPA Network.  

Prior to these surveys at Piedras Blancas, there was little information available 

about the seafloor of the area. At implementation in 2007, seafloor mapping data were 

only available at 70 m resolution and the extent of hard- and soft-bottom seafloor habitats 

was largely unknown. However, as high resolution multibeam bathymetry (2 m 

resolution) became available from the Seafloor Mapping Lab at CSU Monterey Bay in 

2010, the extent of these substrates became apparent. Since 2007, the video surveys 

conducted by the camera sled revealed complex, high-relief rocky habitats interspersed 

with low relief soft sediment patches including ripple-scour-depressions, a potentially 

important soft-sediment habitat for a variety of organisms (e.g., Hallenbeck 2010). An 

analysis of passenger fishing vessel surveys from 1988-2004 in the vicinity of Piedras 

Blancas describes the most frequently landed fish as rockfishes (most commonly blue, 

gopher, olive, vermillion, yellowtail, and copper) and lingcod (Reinicke et al. 2008). 

The research encompassed by this project incorporated the imagery surveys from 

2007 and 2008. We quantified the distribution of fish species and higher taxonomic 

groupings over the heterogeneous seafloor habitats encountered in the PBSMCA. We 

tested the response (detection) of fish with regards to several seafloor habitat variables: 

substrate classification, biogenic structure, soft-sediment bedforms, and depth. Since fish-

habitat associations have been studied using a variety of scales of habitat classification, 

we examined the classification scale that best explained the distribution of each group. 

We then examined the particular categories of substrate, biogenic and bedform features, 

and depth that best explained the distribution of each group.  

We employed an AIC model comparison approach using generalized linear 

models (GLMs, see Burnham and Anderson 2002) to estimate how the probability of 

detection of a fish group depended upon specific habitat variables. This approach 

assumes a uniform detection probability; that fish were detected equally in each habitat 

type. Although MacKenzie (2006) contends that inferences made in violation of this 
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assumption may result in an inaccurate estimation of habitat use by a species, given the 

difficulties of surveying the depths of the ocean floor with any tool, we must proceed 

with the assumption that we sampled an adequate amount of each habitat type to 

accurately represent distributions within each type. This modeling approach allowed us to 

investigate the evidence supporting the combinations of the variables that play the most 

important role in determining fish distribution as well as the habitat types with which 

each fish grouping demonstrated the strongest association. The model comparison 

approach allowed us to estimate the “best” combination of habitat variables, given all 

model possibilities. We were also able to test for spatial autocorrelation without having to 

eliminate large amounts of data, to address the possible violation of independence 

inherent in all spatially clustered data sets.  

Our results indicated that there was very strong evidence suggesting that substrate 

is the most important variable (of the variables we examined in this study) in the 

distribution of demersal fishes. Although fish groups showed associations to the seafloor 

substrate at different classification scales (e.g., hard-bottom (general) vs. boulder 

(specific)), substrate was nonetheless the most influential variable on the response 

(detection) of fishes. Depth, followed by biogenic features and soft-sediment bedforms 

showed some importance in the distributions, but were not nearly as strong. 

We divided observed fishes into groups based on species identifications, as well 

as morphological groups and broad taxonomic groups. Habitat associations of the broad 

taxonomic groupings of ‘small’ (<10 cm) and ‘large’ (>10cm) rockfish were identified as 

mixed low relief substrates (i.e. cobble-mud) and moderate relief rocky reefs, 

respectively. Habitat associations of flatfish were, not surprisingly, identified as soft 

sediments. Quantification of these distributions can be applied by managers when 

designating conservation areas based on broad management units such as rockfish bag 

limits and quotas.  

An understanding of habitat associations even at a sub-genus scale can be 

valuable for species-specific regulations. This less-coarse sub-genus grouping used 

morphological similarities to group rockfish into clusters of two or more species. 

Rockfish within a sub-genus grouping were sometimes identifiable to species but often 

not. To assure consistency, whether species identification was possible or not, the fish 



 

 

7 

were grouped. Most of these groups showed similar habitat associations to low- to 

moderate-relief rocky reefs. This was consistent with the results of the broad “large 

rockfish” grouping (moderate-relief rocky reefs). However, distinction between some 

groups was seen. For example, detections of canary/vermillion/yelloweye rockfish 

complex were specifically associated with the occurrence of boulder habitats. Two of 

these three species are heavily managed (canary and yelloweye rockfish) but all three are 

often indistinguishable to recreational anglers (J. Watson, pers comm).  

Ideally, imagery data would provide the ability to identify all individuals to the 

species level and up-grouping to the management units described above would be a 

simple bookkeeping procedure. However, even when using higher-resolution ROV and 

submersible imagery data, this level is not always attainable, thus understanding the 

application of these broad groups is important to management nonetheless.  

Marine managers are faced with complex questions and insufficient data on the 

distribution of fishes (Airame et al. 2003). This paucity of knowledge was listed 

explicitly as a limitation in applying ecological criteria to the design of MPAs in the 

Channel Islands (Airame et al. 2003). The incremental scientific contributions of this 

study advance the body of knowledge surrounding these criteria. The sled may be an 

imperfect tool, but it is available, affordable, and has been used to answer complex 

questions and provide results that are useful to resolving management issues.  
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CHAPTER 2 

A LANDSCAPE MODELING APPROACH TO 

THE ANALYSIS OF SEAFLOOR IMAGERY 

DATA 

ABSTRACT 

Landscape ecology is used to describe the distribution of species with respect to the 

spatial pattern of habitat patches. Application of this approach to seafloor landscapes, 

which are often heterogeneous in terms of substrate and structure, allows for a foundation 

upon which to study the distribution of fishes across patches and throughout the seafloor 

landscape. We used a towed video camera system to conduct surveys covering an area of 

approximately 40.5 km
2
 of the seafloor over hard and soft bottom habitats at the Piedras 

Blancas State Marine Conservation Area offshore of central California. We evaluated the 

strength of observable fish-habitat associations at a variety of spatial scales, using a set of 

generalized linear models and compared them using Akaike’s Information Criterion 

(AIC). Further, we evaluated the importance of secondary habitat variables such as depth, 

soft-sediment bedforms, and biogenic structure in the distributions of fishes. Model 

results suggested that the most important variable in the distribution of fishes was 

seafloor substrate, although different groups were associated with seafloor substrate at 

different scales (e.g., hard-bottom vs. boulders) and substrate categories (e.g., boulders 

vs. cobbles). Predictor variables of depth, biogenic structure, and soft-sediment bedforms 

showed importance for some fish groups, though to a lesser degree. Effective spatial 

management approaches to fisheries conservation must consider seafloor substrate at 

multiple scales to address the distribution of multiple fish groups. 

INTRODUCTION 

Landscape ecology describes how spatial heterogeneity (patterning) in an 

ecological landscape affects ecological processes, including the way organisms associate 

with their environment (Turner 1989). Although this approach to studying ecosystems 
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has emerged from observations in terrestrial systems, it has increasingly been applied to 

marine ecosystems in the past two decades (Robbins and Bell 1994; Hinchey et al. 2008). 

Application of the tenets of landscape ecology - structure, function, and change - can be 

used to identify the relationships between seafloor habitats and benthic ecosystem 

processes, specifically, the distribution of demersal fishes (Grober-Dunsmore et al. 2008; 

Hinchey et al. 2008; Zajac 2008).  

Fish distributions are governed by broad-scale environmental and physical 

variables such as water temperature (Gilman et al. 2006), latitude (Witman et al. 2004), 

and water depth (e.g., Bergen et al. 2001; MacPherson 2003). At smaller scales, fish 

distributions have been described using structural attributes of seafloor habitat primarily 

related to substrate type (e.g., hard vs. soft, Anderson and Yoklavich 2007; Zajac 2008), 

macro-habitat scale (e.g., 10s of meters, Yoklavich et al. 2000; Auster and Lindholm 

2005; Lindholm et al. 2007), and micro-habitat scale (e.g., centimeters, Auster et al. 

2003a). Fish distributions in relation to biogenic (sessile invertebrate) structure have also 

been studied (Auster et al. 1991, 2003b; Brødeur 2001), though it has been challenging to 

demonstrate an association (Love and Yoklavich 2008). It is important to understand the 

variation in fish responses to these habitat variables, and the scale of response, in order to 

effectively assess conservation measures that manage certain habitats - or even 

landscapes of heterogeneous habitats - for protection (e.g., MPAs).  

Traditionally, fish distribution studies have used trawl-sampling methods; 

however, these methods reduce seafloor structure, remove fish, and provide very little 

habitat data. Alternatively, collecting data with video (or photographic) imagery allows 

access to habitats inaccessible by bottom trawling (e.g., high relief rocks) and enables in 

situ observation of fish-habitat associations that are only available at these depths through 

remote imagery. Over the past decade, studies have increasingly used non-invasive fish 

observation methods with video imagery from submersibles (e.g., Anderson and 

Yoklavich 2007), remotely operated vehicles (e.g., Auster et al. 2003a), and towed 

camera systems (e.g., Auster et al. 2003b, Spencer et al. 2005).  

Along California’s central coast, several fish distribution studies using imagery 

data have been conducted in “deep” water (30 – 300 m). At Cordell Bank, fish 

distributions and assemblage structure were shown to differ based on different habitat 
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scales (Anderson and Yoklavich 2007). Further south, offshore of Davenport, Laidig et 

al. (2009) found that variability in the distribution of rockfishes over different habitat 

types may be attributable to life history stage. Within Monterey Bay, Yoklavich et al. 

(2000) identified guilds of fish species based on their distributions over various habitat 

types in Soquel Canyon. At the Big Creek Ecological Reserve, fishes were designated in 

assemblages based on their distributions over different seafloor habitats (Yoklavich et al. 

2002). These studies describe, along a roughly 300 km latitudinal gradient, the way that 

fish are distributed across a variety of landscapes. We contribute to this body of 

knowledge with an evaluation of fish distributions further south, at Point Piedras Blancas, 

at a newly designated California State Marine Protected Area in the southern portion of 

the Monterey Bay National Marine Sanctuary (MBNMS). Understanding landscape 

variables that affect fish distributions at Piedras Blancas will contribute to the overall 

understanding of how fish use habitat throughout the central coast area.  

Application of a model-comparison approach to fish distributions 

In the studies discussed above and similar work in other areas, fish distributions 

have been evaluated using multivariate clustering representations and analytical 

approaches such as principal components analysis (PCA, Anderson and Yoklavich 2007; 

Anderson et al. 2009), canonical correlation analysis (CCA, Stein et al. 1992; Tissot et al. 

2007), or with a combination of cluster analysis and null-hypothesis testing (Yoklavich et 

al. 2000; Tissot et al. 2007). These approaches provide qualitative diagrams that cluster 

species (or groups) with similar distributions close to one another on two axes and test 

correlation hypotheses against a null hypothesis. 

Meanwhile, comparing fitted linear and logistic models using information-

theoretical approaches, such as Akaike’s Information Criterion (AIC), is gaining 

momentum in ecology (Anderson 2007). Terrestrial ecologists have frequently used the 

comparison of multiple working hypotheses in a model set to make inferences about the 

strengths of the different ecological landscape scenarios, such as those involving habitat 

type and elevation (e.g., Bruggeman et al. 2007). Here, we use a similar approach to 

describe the distributions of fishes over seafloor habitats, assuming a uniform detection 

probability. This approach, contrasted to the traditional method of comparing one null 
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hypothesis to all alternates, allows for improved interpretation of a more complicated and 

dynamic system (Burnham and Anderson 2002; Anderson 2007).  

We used a set of generalized linear models (GLMs) to compare multiple working 

hypotheses (models) that represented different configurations of habitats in the landscape. 

By fitting a set of models with different combinations of possible explanatory variables, 

inferences about the system structure can be made from the model that best describes the 

distribution of each fish group. Further, the relative importance (RI) of each habitat 

variable can be inferred by examining more than just one model (Burnham and Anderson 

2002).  

In this study, we examined the distributions of several demersal fish groupings 

using a camera sled system near Point Piedras Blancas, California. We modeled the 

observed fish habitat associations using data collected on substrate type, substrate 

complexity (relief), soft-sediment bedforms, seafloor depth, and invertebrate structure of 

the habitat. We inferred the relative importance of each of these attributes, as well as the 

type of habitat with which each fish grouping demonstrated the strongest detectible 

association. By describing the landscapes across which these fish were distributed, we 

evaluate fish-habitat associations at Piedras Blancas in the context of other central 

California deepwater studies. 

METHODS 

Study site 

We collected seafloor video imagery offshore of Point Piedras Blancas, California 

(35°39’N, 121°17’W) within and adjacent to the Piedras Blancas State Marine 

Conservation Area (PBSMCA). PBSMCA is one in a network of 29 MPAs implemented 

in 2007 off the coast of central California (Figure 2). PBSMCA encompasses an area of 

22.8 km
2
 near the southern boundary of the MBNMS, and is bordered eastward by a no-

take Marine Reserve and westward by the California state waters (3 nautical mile) 

boundary. The PBSMCA is located approximately five kilometers north of San Simeon, 

California and is a limited-take, state MPA managed by the CDFG. Transects were 

conducted at depths ranging from 30-120 m and were within the MPA and 1.5 km to the 

north and west of the MPA boundary. 
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Figure 2. Study area at Piedras Blancas. Yellow lines indicate transects conducted in 

2007 and 2008, the majority of which fall within the blue boundary encompassing 

the State Marine Conservation Area. Multibeam bathymetry (shaded area) shows 

areas of higher rugosity are concentrated in the MPAs. 10-m isobaths are 

represented by grey lines and show the rapid descent of the continental slope to the 

southwest. 

The general geology of the study area shows a mixed-relief complex rocky seabed 

bordered by low-relief unconsolidated sediments to the north and south (Figure 2). 

Coastal outcrops bordering the area have been mapped as part of the Franciscan melange. 

These outcrops are composed of complexly-folded and sheared marine sedimentary rocks 

that were accreted during the subduction of the Farallon plate (e.g., Shervais et al. 2004). 

Multibeam imagery gathered by the Seafloor Mapping Lab at CSUMB shows that these 

structurally-complex features extend seaward from the coast to form the majority of the 

substrate within the MPA. The bedrock is divided by northwest-trending shear zones with 

well-expressed large- and small-scale, northwest-plunging folds. The generally planar 

bathymetry of the continental shelf and scattered boulder fields observed in video 

imagery indicate that the study area is a wave-cut platform eroded and drowned by 

Holocene sea level rise (Doug Smith, pers. comm.). Video imagery of the bedrock shows 
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that interstratified hard and soft sedimentary beds give rise to sharply-defined 1 m to 2 m 

tall ridges. Unconsolidated sediments border the rocky seabed to the north and the south, 

with rippled scour depressions present in the multibeam data and video imagery adjacent 

to the reef-sediment interface. 

Field sampling  

A camera sled was deployed from the National Marine Sanctuary Program’s R/V 

Fulmar in July and August of 2007 and 2008. The sled consisted of an aluminum frame 

protecting an oblique-facing video camera, lights, sizing lasers (10 cm spacing), and 

navigational equipment; a 250 m armored coaxial cable (tether); and a topside viewing 

station for piloting the sled and making preliminary observations (Figure 1). The altitude 

of the sled was controlled by an operator using a dedicated winch that raised and lowered 

the sled above the seafloor by hauling in or letting out lengths of winch wire and tether. 

For optimal video quality, the vessel and sled drifted at a speed of one knot or less. Video 

imagery was recorded live and stored on miniature digital video tapes that were viewed 

later in the lab. Boat position, sled depth, and some temperature data were also collected. 

Video post-processing 

Each sample unit for extracting data from video imagery was a non-overlapping 

video quadrat (referred to here as a ‘frame’, Figure 3). Distance between the sizing lasers 

(10 cm) was used to calculate frame width for each sample. To standardize the area 

encompassed in each frame, we limited imagery to a consistent altitude above the 

seafloor. Samples in which the frame width was less than 1.0 m or greater than 2.0 m or 

where the angle was such that the seafloor encompassed less than 75% of the view were 

eliminated from analysis. 

Three habitat variables were collected for each frame: substrate grain-size and 

corresponding relief, presence of soft sediment bedforms, and presence and morphology 

of biogenic structure. For the substrate grain-size variable, the primary grain size in a 

frame (encompassing ≥ 50% of the area) and secondary grain size (encompassing ≥ 20% 

of the area) were recorded using a modification of the microhabitat classification system 

of Greene et al. (1999) and as per Tissot et al. (2006). The relief of both the primary and 

secondary grain size was recorded using a categorical system (Table 1).  
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Figure 3. Camera sled frame delineation. Frames are non-overlapping segments of 

video as the sled moves over the seafloor and are treated as individual sample units 

Soft-sediment bedforms were recorded as presence of mounds or depressions in 

mud or sand that were greater than 10 cm diameter. Biogenic structure was recorded as 

the presence of specific structure-forming, attached epifaunal invertebrates (sponges, 

gorgonians, sea whips, and sea pens) greater than 5 cm in height. 

The depth of the camera was recorded approximately every minute, using the on-

screen display when the camera was closest to the seafloor, and was used as a proxy for 

seafloor depth throughout that minute of sampling (change in depth rarely exceeded 5 m 

per 1 km of sampling). 

Finally, the observation of any fishes, identified to the lowest taxonomic level 

possible, was recorded for each frame. Fishes were grouped at the species level (i.e. rosy 

rockfish, Sebastes rosaceus), at the “species complex” level using morphological 

similarities (i.e. olive or yellowtail rockfish, Sebastes serranoides or S. flavidus), at the 

genus level (i.e. large rockfish, Sebastes spp >10cm), and also at a more broad taxonomic 

level (i.e. flatfishes, Order Pleuronectiformes). The resulting dataset consisted of a matrix 

for each transect, where each sample unit (frame) had a primary and secondary grain-size 

with corresponding relief, detection/non-detection of bedforms, presence/absence and 

type of biogenic structure, a depth value, and detection/non-detection of each fish 

grouping. The occurrence of an individual fish could count in more than one grouping 

(i.e. a pygmy rockfish could be a species-level group “detection” and also a small 
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rockfish (<10cm) group “detection”) because each grouping was tested with an 

independent model set.  

 

Table 1. Model variables, categories, and definitions. Substrate, grain size, and relief 

categories (adapted from Greene et al (1999)); bedform categories; and biogenic 

structure categories 

Substrate    Category   Description     

Soft (S)     Mud (M)   Fine-grain soft sediment 

    Sand (N)   Coarse-grain soft sediment 

    Pebble/Gravel (P)  Loose rocks <2.5 cm   

Hard (H)     Cobble (C)  Loose rocks 2.5-24 cm 

  Boulder (B)  Loose rock >24 cm 

  Rock (R)   Continuous rock (bed or ridge) 

 

Relief    Category                                Description                                                

Crested (CS)  Soft sediment with ripples or waves  

Low (LO)  <1 m above seafloor  

Moderate (MD)  1-2 m above seafloor  

High (HI)   >2 m above seafloor 

   

Bedforms (Mounds/Depressions) Category   Description 

    Present (MODEP) >10 cm in diameter 

    Absent (NOMODEP) <10 cm in diameter or no form whatsoever 

 

Biogenic Structure   Category   Description 

Soft (BIO-S) Sessile invertebrates >5 cm in height on soft 

substrate (sea whips e.g. Halipteris spp and 

Stylatula spp and sea pens e.g. Ptilosarcus spp) 

Hard (BIO-H) Sessile invertebrates >5 cm on hard substrate 

(gorgonians, e.g. Swiftia spp; and sponges) 

None (BIO–NO) No invertebrates >5 cm height 

             

 

Statistical Analyses: Fitting Generalized Linear Models 

To test the response (detection/non-detection) of a fish grouping as a function of 

the descriptive habitat variables and depth, we fit a set of generalized linear models 

(GLMs) to examine the response to each variable individually and as a combination of 
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variables. Our response, yi, was binomial, where “1” is detection of a fish grouping and 

“0” is a non-detection.  

  We fit the models using the GLM function in the ‘R’ statistical package (R 

Development Core Team): 

 

ln(Pi/(1-Pi)) = β0  + β1 x1,i + . . . + βn xn,i 

 

where Pi = Pr(yi = 1| xi), βo is a constant, β1 . . . βn are coefficients corresponding to the 

predictor variables x1,i . . . xn,i, and yi is the response variable (detection of a fish at 

location i). 

 We were primarily interested in fish occurrence, but our observation system (the 

towed camera system) only allowed us to quantify fish detection. Fish may have occurred 

within a frame but were either hidden from view (e.g. concealed in a crevice or hole) or 

may have fled the frame prior to arrival of the camera; both scenarios render the fish un-

detectable.  This non-uniform detection probability could potentially bias inferences 

about their true habitat associations (as in “Scenario 2” from MacKenzie 2006). We 

assumed that detection probability was essentially uniform, in order to achieve inference 

about actual fish occurrence; and we recognize that the validity of these inferences is 

conditional on the validity of that assumption. 

The results from each GLM in a model set were compared using Akiake’s 

Information Criterion (AIC). Specifically, the AIC weights (AICw) of each model were 

compared. AICw represents the probability that a model is the best-fit, given the other 

models in the set (Burnham and Anderson 2002). From the AICw, evidence ratios (ERs) 

for the best-fit models were calculated. ERs compare two models: for our results, ERo 

compares the null model to the one with the highest AIC and ERB compares the two 

highest AICw values to infer the degree to which one is the best fit. When any ER 

between the best-fit model and the next-best model in the set was ≤ √10, both were 

considered (Jeffreys 1961). 

 We examined two sets of models. First, the Substrate Classification Model Set 

(MS1) used a number of substrate classification schemes that represented different scales 

of describing the same habitat (i.e. “hard-bottom” vs. “boulder”). Second, the Full Model 
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Set (MS2) incorporated additional habitat variables along with the resulting best-fit 

substrate classification scheme of MS1. The lists of all possible models for MS1 and 

MS2 are extensive and thus are listed in Appendix A. 

Statistical Analyses: Substrate Classification Model Set (MS1) 

The first model set (MS1) was constructed to determine the substrate 

classification scheme that best described the response of a given fish group. To 

investigate a fish grouping’s response to different substrate classification schemes, the 

grain-size and relief data collected for each frame were re-categorized in several other 

ways. The resulting schemes included (1) substrate, where the seafloor is categorized as 

either homogenous hard-bottom or soft-bottom; (2) habitat complexity, where a grain-

size and relief were combined (e.g., boulder-moderate or sand-low); (3) grain-size alone; 

and (4) relief alone. The combination of the primary and secondary coverage of each type 

(1, 2, 3, and 4, above) were also considered, resulting in a total of eight different habitat 

classification schemes: primary substrate, substrate combination, primary grain-size, 

grain-size combination, primary relief, relief combination, primary habitat complexity, 

and habitat complexity combination (Table 2). We used these eight habitat classification 

schemes as variables to fit a set of nine single-variable GLMs, where the ninth model was 

the null model, representing a random distribution. 

We used ERB values to determine which model was the best fit of the models in 

the set. The habitat classification scheme used in the best-fit model (highest AICw) from 

MS1 for each fish grouping was then used in the MS2 analysis. If the two highest AICw 

values held an ERB < √10, both classification schemes were considered in MS2 because 

both were similarly well-fit. They occurred as alternate sets in MS2, never in the same 

model. 

Statistical Analyses: Full Model Set (MS2) 

The second model set (MS2) used the variable that represented the habitat 

classification scheme obtained from the best-fit model from MS1 as well as the other 

habitat variables: bedforms, biogenic structure, and depth. For the full model set, sixteen 

models total, one of every possible combination of all four variables were fit for each 

response (see Appendix A for the complete set). We inferred that the model (or models) 
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with the highest AICw values contained the predictors that best explain the detection of 

each fish grouping. ERo values were used to compare the model with the highest AICw to 

the null model, to explain the combination of variables that best explained the habitat 

variables a fish was responding to.  

 

Table 2. Habitat classification schemes used in MS1 

SUBSTRATE (SUBS) 

Categories

Primary Substrate (SUBS-primary) Describes the predominant substrate (>50% coverage) in a 

frame
H or S

Substrate Combination (SUBS-combo) Combines the SUBS-primary with secondary substrate HH or SS or HS or SH                 

(SH and HS also called "mixed")

GRAIN SIZE (GS)

Primary Grain Size (GS-primary) Describes the grain size (>50% coverage) in a frame M, N, P, C, B, or R

Grain Size Combo (GS-combo) Combines the GS-primary with seconday grain-size e.g. CM, CN, CC, CB, CR

RELIEF (REL)

Primary Relief (REL-primary) Describes the relief of GS-primary LO, MD, HI, or CR

Relief Combo (REL-combo) Combines the REL-primary with secondary relief e.g. MDLO, MDHI, MDCR

HABITAT COMPLEXITY (HABCOM)

Primary Habitat (HABCOM-primary) Combination of GS-primary and REL-primary e.g. RLO, RMD, RHI, RCR

Habitat Combination (HABcombo) Combination of HABCOM-primary and secondary 

HABCOM
e.g. RLORMD, NLOCLO

*Note that some combinations are not physically possible. (These have been crossed out, above.) For example, R cannot be CR. 

 S=soft (mud, sand, pebble/gravel)   H=hard (rock, boulder, cobble)

M=Mud (fine-grain), N=Sand (coarse-grain), P=Pebble/Gravel (very coarse grain), C=Cobble (diameter 5-25cm), B=Boulder (diameter >25cm), R=Rock 

LO=Low (flat and low, <1m), MD=Moderate (~1m), HI=High (>1m), CR=Crested (waves and/or ripples in M, N, 

and P only)

 

Statistical Analyses: Averaged Coefficients and Relative Importance 

(RI) 

According to Anderson (2007), substantial information exists in the second, third, 

etc. best-fit models and that the averaged model coefficients and relative importance of 

the variables draw on this available evidence. Each model set from MS2, for each 

response, was averaged using the MuMIn (Multi-Model Inference) package for R (Barton 

2011). This function averages all coefficients (βn) across all models in the balanced set 

and returns an averaged value for each, relative to a user-set reference category. From 

these averaged coefficients, inference can be made about the categories of each variable 

that a fish is most strongly associated with.  

For all habitat variables, the reference category was set at either mud (M), soft 

(S), low (LO), or the appropriate combination of these (e.g., MLOMLO for the habitat 

complexity combination scheme). This was done so that inference regarding the 

categories would be comparable across responses.  
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Coefficient values that were greater than the reference category values suggested 

a positive association with a given category and the magnitude of the association was 

inferred from its value relative to the reference category value. Coefficients less than the 

reference category would suggest a negative association with a given category. For 

averaged coefficients, setting the standard errors that were used for inference at a 

threshold <2.0 provided a level of certainty about each coefficient value. 

The MuMIn package also quantifies the relative importance (RI) of each variable, 

providing the weight of importance that each plays in the model set. This gives an 

indication of the certainty that the response (detection) of a fish is associated with a given 

variable. RI values >0.50 suggest ‘some’ evidence that the variable plays a role, while 

values >0.75 suggest ‘strong’ or ‘substantial’ evidence.  

Spatial Autocorrelation  

Imagery data (non-overlapping “frames”) were collected as sequential points 

along transect lines, potentially violating the assumption of independence in a random 

sample. To account for this, we tested for spatial autocorrelation in the residuals for each 

best-fit model using Moran’s I. This correlation coefficient provided a value of the co-

variation in responses within a defined spatial zone. We calculated Moran’s I for each 

fish grouping at 50 m increments using custom R-code that is equivalent to the 

correlation function in the spatial package (Appendix C). Our code was modified to sum 

a weighted Moran’s I for each transect, in order to preserve the independence of each 

transect from the others. These values were plotted as “correlograms” for increasing 50 m 

bins up to a maximum of 1000 m. For fish species that showed spatial autocorrelation (a 

decreasing Moran’s I with increasing distance), the raw responses were culled to remove 

frames that were within 5 m of each other. Residuals from the culled data were then re-

examined using the modified correlogram R-code. Fish species that did not have a 

decreasing Moran’s I with increasing distance were assumed not to be spatially 

autocorrelated.  

We used the residuals of the best-fit models to test for autocorrelation. This 

allows for the model variables to primarily account for the variability in the response and 
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then quantifies the remaining variation not explained by the variables in the original 

model fit. 

RESULTS 

A total of 25 video transects covering approximately 40.5 km
2
 of seafloor were 

conducted with the camera sled system at the PBSMCA. Depths of the transects ranged 

from 30-120 m. Of the 15,116 frames observed, 10,540 frames were useable based on the 

criteria for standardizing frame size and used for analysis. The majority of frames were 

homogenous soft-sediment substrates (70% of frames), particularly fine-grain sandy-

mud. Harder substrata were observed in 24% of frames and mixed hard-and-soft was 

observed in 6%. Homogenous mud substrates (MM) were the most commonly observed 

grain-size (64%) and rock (ridges and bedrock) was the next most common (17%).  

The two other structural habitat variables, soft-sediment bedforms and biogenic 

structure were seen in 45.7% and 11.1% of the total frames, respectively. Biogenic 

structure comprised two classes; “hard substrate biogenic structure” (sponges and 

gorgonians) was observed in 1.5% of frames and “soft substrate biogenic structure” (sea 

whips and pens) was observed in 9.5% of frames. Although sponges are sometimes 

observed growing in soft substrates, this was not observed in imagery from this study. 

A total count of 2,186 fish were observed within useable frames and identified to 

various taxonomic levels (Table 3). Hereafter, all fish counts discussed refer to counts of 

a fish grouping’s detection in a frame, not the total number of individuals observed in a 

frame. The detection of fish in the frame-by-frame analysis totaled 1,403 fishes in 10,541 

frames. Fish that were present in fewer than five frames and did not fit into a species, 

species-complex, or general group were not used in analysis.  

Spatial Autocorrelation 

Moran’s I correlograms for the residuals of each response’s best-fit model from 

MS2 demonstrated minimal to no spatial autocorrelation for all fishes except pygmy 

rockfish (Appendix B, Figure B6). The re-plotted correlogram for the culled data for this 

species showed no spatial autocorrelation (Appendix B, Figure B7), suggesting that the 

pygmy rockfish data are spatially autocorrelated at distances less than 5m. The culled 

data were used in the GLM sets. 
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Table 3. All fishes observed in the study area. The level indicates the taxonomic level 

fish were identified to, while the response grouping shows the groups as used in the 

GLMs. nindividuals represents the total individuals observed for each group (total 

nindividuals = 3,237) while nframes represents the number of frames in which a given 

grouping occurs (total nframes = 2,128).  

Level Response Grouping Description n individuals n frames

Species Level Painted greenling Oxylebius pictus 12 12

Blackeye goby Rhinogobiobs nicholsi 314 236

Pygmy rockfish Sebastes wilsoni
2

149 11

Rosy rockfish Sebastes rosaceus
1,3

18 17

Squarespot rockfish Sebastes hopkinsii
3

30 7

Species Complex Blue and black rockfish (BLBK) Sebastes mystinus and S. melanops
3

46 22

Copper/gopher rockfish (CPGP) Sebastes caurinus and S. carnatus
3

33 32

Olive and yellowtail rockfish (OLYT) Sebastes serrinoides and S. flavidus
3

71 38

Canary/vermillion/yelloweye (CVYE) Sebastes pinnager, S. miniatus, S. rubberimus
3

30 39

Unidentified Sebastomus Sebastomus complex
3

363 321

Genus Level Ronquils Rathbunella  sp 32 32

Small rockfish (<10cm) TOTAL 274 104

Unidentified Sebastes  spp <10cm
2

225 93

Large rockfish (>10cm) TOTAL 925 584

Unidentified Sebastes  spp >10cm
3

323 195

 Cowcod Sebastes levis
3

1 1

Boccacio Sebastes paucispinus
3

1 1

Flag rockfish Sebastes rubrivinctus
3

3 3

Greenspotted rockfish Sebastes chlorostictus
3

1 1

Halfbanded Sebastes semicinctus
3

1 1

Starry rockfish Sebastes constellatus
3

4 4

Order/Family Level Unidentified Flatfishes Order Pleuronectiformes 289 283

Combfish/lingcod (CMLG) TOTAL 38 37

Unidentified lingcod/combfish 15 15

Lingcod Ophoidon elongatus 4 4

Combfish Zaniolepis spp 19 19

Other species identified but not used in analysis (n<5)

Pacific hagfish Etaptretus stouti 2 2

Kelp greenling Hexagrammus decagrammus 4 4

Unidentified Poachers Family Agonidae 2 2

Unidentified Rays Family Rajidae 4 4

Pink surfperch Zacentrus rosaceus 4 4
1
Counted in Sebastomus complex

2
Counted in small rockfish group

3
Counted in large rockfish group  

 

Overall Model Results 

All best-fit models (highest AICw) in MS1 (Table 4) and MS2 (Table 5) had ERo 

values above √10, demonstrating at least substantial association with the seafloor 

substrate, regardless of scale, for all groups (conditional on the assumption of uniform 

detection probability). In MS1, the most coarse-scale classification scheme, substrate 

(hard/soft/mixed), was the best predictor for nine fish groups, while the grain-size scheme 

(best predictor for two fish groups) and the habitat complexity scheme (grain-size plus 

relief, best predictor for four) described the rest (Table 4). The relief-only scheme was 



 

 

22 

not the best predictor for any fish group, although this scheme was considered in some 

MS2 sets because it was a next-best-fit model with an ERB value <√10 for the 

combfish/lingcod group. Support for the best substrate scale within a set was often very 

clear. ERB were greater than > √10 for all but four fish groups (details below). These 

responses had one or more habitat classifications from MS1 that were explored in MS2.  

There was observable evidence for some form of habitat association by all fish 

groups considered because the ERo between the best-fit model and the null model in MS2 

was greater than 449, in all cases (assuming inconsequential detection bias, relative to the 

strength of the evidence ratios). Although the best-fit models varied in the number and 

type of variables, the best-fit for each response always included the substrate variable 

(Table 5). For all best-fit models that contained two or more variables, the depth variable 

was always present. ERB values for all best-fit and second-best-fit models in MS2 were 

less than √10. This suggests that, while the models explain the distribution better than the 

null model (representing a random distribution) for all responses, the best-fit models 

within a set were similar. RI values and categories corresponding to averaged coefficients 

nonetheless allow us to infer which variables and categories of variables supported each 

response. 

Table 6 represents the specific categories within each variable with which each 

fish was most strongly associated. For each fish grouping, we observed an association to 

at least one particular substrate category. For most fish groupings, we observed an 

association to more that one substrate category, such as large rockfish who demonstrated 

a positive association with 53 categories of habitat complexity classification scheme. For 

fish-habitat associations that were observed with more than two categories, the relative 

values of the coefficients are plotted in Figures B1A/B/C of Appendix B. Standard errors 

were > 2.0 for most coefficients in the bedform and biogenic structure variables, 

demonstrating that inference from these variables was often inconclusive. (Refer to 

Appendix B, Tables B3 and B5 for all coefficient values.) 
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Table 4. Results of MS1 AIC comparison. ERo represents the ratio between the best-fit and null-model AICw values. ERB 

represents the ratio between the best-fit and second-best-fit model. Multiple substrate classification schemes are reported for 

responses where ERB values were < √10. The corresponding AICw value(s) (AICw1/2/3) for these fish groupings are also shown 

for the best-fit model (and the second and third best-fit models, where applicable).    

Best-supported Substrate Classification Scheme AICw1/2/3 ERo ERB

Single Species Level

Painted greenling SUBS-combo 0.91 3.51E+07 11.25

Blackeye goby GS-combo 1.00 1.51E+175 9.74E+06

Pygmy rockfish SUBS-primary 0.79 8.24E+05 7.40

Rosy rockfish SUBS-combo 0.83 1.15E+08 5.94

Squarespot rockfish SUBS-combo 0.75 449.62 5.48

Slecies Complex Level

Blue/Black rockfish (BLBK) GS-primary/SUBS-combo 0.63/0.26 6.07E+08 2.39

Copper/Gopher rockfish (CPGP) SUBS-combo/SUBS-primary 0.66/0.24 7.08E+12 2.75

Olive/yellowtail rockfish (OLYT) HABCOM-primary 0.99 2.81E+21 80.96

Canary/Vermillion/Yelloweye rockfish (CVYE) GS-primary 0.88 1.60E+17 7.53

Sebastomus rockfish HABCOM-primary 0.99 7.18E+166 78.09

Genus Level

Ronquils SUBS-primary/HABCOM-primary/GS-primary 0.47/0.28/0.17 4.98E+15 1.66

Small rockfishes (<10cm) HABCOM-primary 0.91 8.99E+49 10.32

Large rockfishes (>10cm) HABCOM-combo 1.00 7.53E+285 3.45E+03

Order/Multi-family Level

Flatfishes (Pleuronectiformes) SUBS-combo 0.82 1.96E+41 4.43

Combfish/Lingcod SUBS-primary/REL-primary 0.41/0.33 6.10 1.24  
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Table 5. Results of MS2 AIC comparison and corresponding RI values for each variable. RI values >0.75 are bolded, 

indicating substantial evidence while RI values between 0.50 and 0.75 are italicized, indicating positive but not substantial 

evidence.    

Relative Importance (RI) Value

Best Fit Model AIC w ER o ER B Substrate Depth Biogenic Struct Bedforms

Single Species Level

Painted greenling SUBS-combo + DEPTH 0.60 4.15E+09 2.72 1.00 0.99 0.18 0.27

Blackeye goby GS-combo + DEPTH + MODEPS 0.32 1.26E+177 2.18 1.00 0.98 0.39 0.54

Pygmy rockfish SUBS-primary + DEPTH 0.54 1.32E+07 2.72 1.00 0.94 0.22 0.27

Rosy rockfish SUBS-combo 0.41 1.15E+08 1.79 1.00 0.36 0.12 0.27

Squarespot rockfish SUBS-combo 0.35 4.50E+02 1.44 0.96 0.41 0.17 0.29

Sub-genus Level

Blue/Black rockfish (BLBK) SUBS-combo + DEPTH 0.35 1.54E+11 1.37 1.00 1.00 0.26 0.42

Copper/Gopher rockfish (CPGP) SUBS-combo + DEPTH + BIOGENIC 0.32 1.05E+14 1.76 1.00 0.91 0.63 0.28

Olive/yellowtail rockfish (OLYT) HABCOM-primary 0.46 2.81E+21 2.70 1.00 0.27 0.14 0.27

Canary/Vermillion/Yelloweye rockfish (CVYE) GS-primary 0.40 1.60E+17 1.62 1.00 0.38 0.12 0.27

Sebastomus rockfish (STOM) HABCOM-primary 0.36 7.18E+166 2.18 1.00 0.27 0.28 0.31

Genus Level

Ronquils SUBS-primary + DEPTH + MODEPS 0.13 5.66E+15 1.05 1.00 0.53 0.18 0.50

Small rockfishes (<10cm) HABCOM-primary + DEPTH 0.60 1.24E+56 2.63 1.00 1.00 0.17 0.28

Large rockfishes (>10cm) HABCOM-combo + DEPTH + BIOGENIC 0.46 4.98E+287 1.71 1.00 0.75 0.96 0.37

Order/Multi-family Level

Flatfishes (Pleuronectiformes) SUBS-combo 0.35 1.96E+41 1.75 1.00 0.27 0.25 0.36
Combfish/Lingcod REL-primary + DEPTH + MODEPS 0.29 1.12E+03 1.21 0.84 1.00 0.21 0.58  
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Table 6. Habitat categories with which each fish group was observed to have the strongest associations. The substrate column 

displays the category with the highest (and in most cases, second highest) coefficient value. Asterisks (*) indicates an 

association with multiple coefficients, see Appendix B for more information. Tilde (~) indicates that the standard errors for the 

coefficients were >2.0 and are not thus not reported.      

 

Single Species Level Substrate Depth Biogenic Struct Bedforms

Painted greenling HS, HH shallow ~ ~

Blackeye goby MR, RC* shallow Soft, Hard
-

NO

Pygmy rockfish H deep ~ ~

Rosy rockfish HS, HH* deep Hard ~

Squarespot rockfish SH, HH deep ~ ~

Sub-genus Level

Blue/Black rockfish (BLBK) HS, SH* shallow ~ ~

Copper/Gopher rockfish (CPGP) HS, HH* deep Soft, Hard NO

Olive/yellowtail rockfish (OLYT) RHI, RMD* Hard ~

Canary/Vermillion/Yelloweye rockfish (CVYE) B, R* ~ ~

Sebastomus rockfish (STOM) BHI, MCS* Hard, Soft
-

NO

Genus Level

Ronquils H deep Hard ~

Small rockfishes (<10cm) MCS, CLO* deep Soft, Hard
-

~

Large rockfishes (>10cm) MLORMD* shallow Soft, Hard YES

Order/Multi-family Level

Flatfishes (Pleuronectiformes) SS, SH
-

Soft YES

Combfish/Lingcod CS, LO deep Soft
-

NO
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Species-level Model Results 

We identified 428 fishes to one of five species levels: painted greenling Oxylebius 

pictus (n=12), blackeye goby Rhinogobiops nicholsi (n=381), rosy rockfish Sebastes 

rosaceus (n=17), pygmy rockfish S. wilsoni (n=11), and squarespot rockfish S. hopkinsi 

(n=7).  

For MS1, the substrate classification scheme that best described the distribution of 

fish at the species-level was substrate (hard vs. soft). The substrate-combination (SUBS-

combo) scheme described squarespot rockfish (AICw=0.75, ERB=5.48), rosy rockfish 

(AICw=0.83, ERB=5.94), and painted greenling (AICw=0.91, ERB=11.25) while the 

primary-only substrate (SUBS-primary) best described pygmy rockfish (AICw=0.79, 

ERB=7.40). Blackeye gobies, however, were shown to be distributed based on the grain-

size combination scheme (GS-combo, AICw=1.00, ERB=9.75x10
6
) (Table 4). 

For the averaged full model (MS2), the substrate variable had the highest RI for 

all species, followed by depth, bedforms, and biogenic structure (Table 5). For painted 

greenling, blackeye goby, and pygmy rockfish, depth showed strong evidence as an 

important variable (RI = 0.99, 0.98, and 0.94, respectively). Depth was also present in 

each of the best-fit models from MS2 for each of these groups. Bedforms demonstrated 

some evidence of importance in the distribution of blackeye gobies (RI=0.54).  

From MS2, averaged coefficient values demonstrated that painted greenlings and 

pygmy rockfish were both observed to associate with primarily hard substrate categories, 

however painted greenlings were observed to be associated with shallow habitats while 

pygmies were observed to be associated with deeper areas (Table 6). Squarespot rockfish 

showed an observable association with mixed (soft-hard) and homogenous hard-bottom 

substrate categories. Blackeye gobies showed a strong observable association with a 

variety of grain-size combination categories, the strongest of which were mud-rock and 

rock-cobble (see Appendix B for a complete list) as well as a positive association with 

soft-substrate biogenic structure (though a negative association with hard-substrate 

biostructure) and to soft sediment without bedforms. Rosy rockfish showed an observable 

association with both mixed and homogenous hard substrate categories and hard-
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substrate biogenic structure. (See Appendix B for a full list of averaged coefficient values 

for which the corresponding categories are described above.) 

Species-complex-level Model Results 

We identified 471 fishes to five multi-species groups (species complexes): 

blue/black rockfishes Sebastes mystinus and S. melanops (BLBK, n=22), copper/gopher 

rockfishes S. caurinus and S. carnatus (CPGP, n=32), olive/yellowtail rockfishes S. 

serranoides and S. flavidus (OLYT, n=38), canary/vermillion/yelloweye rockfish S. 

pinnager, S. miniatus, and S. ruberrimus (CVYE, n=39), and the Sebastomus complex 

within the Sebastes genus (STOM, n=340) which includes starry rockfish S. constellatus, 

greenspotted rockfish S. chlorostictus, rosy rockfish S. rosaceus, among others.  

The species-complex-level revealed a broader spectrum of substrate classification 

schemes that best described the responses (Table 4). The SUBS-combo scheme was best 

only for CPGP (AICw=0.66) and due to the low ERB (2.75) the SUBS-primary scheme 

was also considered in MS2 (AICw=0.24, ERB=7.08). Primary grain-size (GS-primary) 

best described the distribution of both CVYE and BLBK (AICw=0.63 and 0.88, 

ERB=2.39 and 7.53, respectively). Because of the low ERB for BLBK, the second-highest 

classification scheme of SUBS-combo (AICw=0.26, ERB=6.07) was also considered in 

MS2. For OLYT and STOM, the best classification scheme was the primary habitat-

complexity scheme (HABCOM-primary, AICw=0.99 and 0.99, ERB=80.96 and 78.09 

respectively).  

For the averaged full model (MS2, Table 5), the substrate variable had the 

strongest RI for all groupings, although depth also had a strong RI for BLBK and CPGP 

rockfish (1.00 and 0.91, respectively), suggesting that there is substantial evidence that 

substrate and depth play an important role in the distribution of these groups. CPGP also 

had a notable RI for the biogenic structure variable (0.64), suggesting some evidence that 

this variable is associated with CPGP distributions.  

Averaged coefficients (Table 6) demonstrated that BLBK showed the strongest 

observable association with mixed substrates, while CPGP showed the strongest 

observable association with mixed and homogenous hard substrates. OLYT showed an 

observable association with high and moderate relief rock ridges and STOM with high 
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relief boulder grain sizes as well as crested mud. Both showed an observable association 

with hard-substrate biogenic structure and STOM showed an observable negative 

association to soft biostructure and bedforms. CVYE were observed to be associated with 

boulder and rock grain sizes. (See Appendix B for a full list of averaged coefficient 

values for which the corresponding categories are described above.) 

Genus-level Model Results 

Ronquils of the Rathbunella genus (R. alleni and R. hypoplecta) were 

indistinguishable and thus grouped together at the genus level (n=32). Additional genus-

level responses were small rockfish (~ 5 – 10 cm) and large rockfish (> 10 cm). Small 

rockfish (n=104) included pygmy rockfish, halfbanded rockfish Sebastes semicinctus, 

and unidentifiable small rockfishes. Large rockfishes (n=584) included all other 

identifiable (see Table 3 for a complete list) and unidentifiable rockfishes. 

 For the substrate classification scheme (MS1; Table 4), both size classes of 

rockfish were observed to respond most strongly to habitat complexity (HABCOM) 

schemes; small rockfish responded to HABCOM-primary AICw=0.91, ERB =10.32) and 

large rockfish responded to the HABCOM-combo scheme (AICw=1.00, ERB =3445). 

Ronquils were observed to respond most strongly to the SUBS-primary scheme 

(AICw=0.47, ERB =1.66). However due to the low ERB of ronquils, two additional 

schemes were considered in MS2: HABCOM-primary (AICw=0.28, ERB =2.81) and GS-

primary (AICw=0.17, ERB =5.96) (Table 5).  

For the averaged full model (MS2; Table 5), the substrate variable again had the 

highest RI for each genus grouping. For small rockfish, depth had an equally strong RI 

(1.00). Large rockfish and ronquils showed some evidence of RI for the depth variable, 

though to a lesser degree (0.75 and 0.53, respectively). Large rockfish also showed a 

strong RI of 0.96 to biogenic structure, giving a substantial certainty that they are 

responding to biogenic structure. Biogenic structure was also present in the best-fit model 

(AICw=0.46, ERo=4x10
287

) for large rockfish.  

Averaged coefficient values from MS2 (Table 6) demonstrated that ronquils were 

observed to be associated with deeper hard substrates as well as with hard-substrate 

biogenic structure. Large rockfish showed an observable association with shallow depth 
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and many habitat complexity categories, but the strongest was flat-mud-moderate-rock 

(see Appendix B for all categories). Large rockfish also showed an observable 

association with biogenic structure in both hard and soft substrates and, curiously, 

bedforms in soft substrates. Small rockfish showed an observable association with deeper 

depths, soft-substrate biogenic structure, and an association with a variety of habitat types 

(see Appendix B for the complete list). The strongest observable association was with 

crested mud and low-relief cobble. (See Appendix B for a full list of averaged coefficient 

values for which the corresponding categories are described above.) 

Order-level and Multi-family-level Model Results 

All flatfishes (Order Pleuronectiformes, n=283) were grouped together. This 

included right-eye and left-eye flatfishes, whether or not the eye-side was distinguishable. 

It is likely that a large portion of these flatfish were sanddabs (Citharichthys spp.); 

however, to maintain accuracy in identifications they were all grouped at the order level. 

A second group consisting of combfish (Zaniolepis spp.) and lingcod (Ophiodon 

elongatus) was created because of the often indistinguishable occurrence of both fishes 

over soft sediments (“CMLG”, n=37). Most of the smaller (younger) lingcod fell into this 

“indistinguishable” category and were observed over soft substrates. Most of the larger 

(older) lingcod occurred over hard-bottom substrates.  

In the habitat classification scheme model (MS1; Table 4), flatfish were observed 

to respond most strongly to the SUBS-combo scheme (AICw=0.82, ERB=4.43) while 

CMLG were observed to respond most strongly strongest to the SUBS-primary scheme 

(AICw=0.41, ERB=1.24) but also to the primary relief scheme (AICw=0.33, ERB=3.80).  

For the averaged full model set (MS2; Table 5), substrate demonstrated 

substantial evidence as an important variable for flatfishes (RI=1.00) while both depth 

and substrate demonstrated substantial evidence for CMLG (RI=0.84, 1.00 respectively). 

There is some evidence that bedforms may also play a role for CMLG, but to a lesser 

degree (RI=0.58).  

Averaged coefficients from MS2 (Table 6) demonstrated an observable positive 

association of flatfishes to homogenous soft substrates and an observable negative 

association with mixed substrates. Additionally, flatfishes showed an observable 
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association to soft-sediment biogenic structure and bedforms. Standard errors were too 

high to report the relief category with which CMLG were most strongly associated with 

however they showed an observable negative association with soft-sediment biogenic 

structure and bedforms. (See Appendix B for a full list of averaged coefficient values for 

which the corresponding categories are described above.) 

DISCUSSION 

These results demonstrate that there is strong evidence suggesting that seafloor 

substrate is an important indicator of demersal fish distributions. Distributions vary 

across different fish species (and genera, family, etc.) and morphologies, both in the 

scales at which fish respond to the seafloor and in the importance of certain substrate or 

grain size categories. For the most part, fish-habitat association data derived from 

imagery collected with the camera sled are consistent with other studies conducted along 

the California central coast using imagery from a human-occupied submersible 

(Yoklavich et al. 2000; Laidig et al. 2009). The fish-habitat associations reported here 

were quantifiable using an AIC comparison of generalized linear models. This 

demonstrates the value of this approach both in obtaining results consistent with other 

literature and for exploring the use of a new analytical method that eliminates very few 

data from the set – an important consideration amidst the challenges of collecting data in 

deep ocean ecosystems. Given the widespread use of substrate and depth in describing 

demersal fish distributions (Miller and Lea 1976; Eschmeyer et al. 1983; Love et al. 

2002), these results validate the use of these variables, particularly at this site and for the 

substrates observed. Additional structural variables of biogenic structure and soft-

sediment bedforms demonstrated little importance in fish distributions.  

By modeling the response of each fish grouping to a variety of equivalent habitat 

classification schemes, we showed that some schemes describe fish-habitat associations 

better than others. While these single-variable classification-scheme models (MS1) 

explained the specificity of the scale that best describes the distribution of each grouping, 

inference from the averaged coefficients in MS2 suggested the particular substrate, grain-

size, or relief categories a given fish was observed to associate with.  
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Primary substrate (SUBS-primary) and substrate combination (SUBS-combo) 

most commonly described the scales at which multiple groups were distributed. This 

suggests that characterizing the seafloor in terms of substrate (soft, hard, or mixed) is 

important, perhaps essential when describing fish habitats. This is true across different 

fish grouping levels; all four showed at least one best-fit model to this type of 

classification. This scale is a straightforward classification and can easily be obtained and 

applied using moderate-resolution (10-20 m) multi-beam maps or simple imagery 

surveys.  

The grain-size and the habitat-complexity (grain size plus relief) microhabitat 

scales were also important in describing fish distributions, suggesting that not only the 

basic substrate types, but micro-habitats within substrates are important. Some groupings, 

such as blackeye gobies (which responded most strongly to grain-size) showed an 

association with more specific habitats (i.e. mud-rock) within an area that was 

categorized as “mixed” by another, simpler scheme. Two observed color morphs of 

gobies may further describe the distribution of this small species. Green- or yellow-

shaded gobies are often seen over higher-relief homogenous hard substrates while white 

or tan gobies were observed primarily over mixed sand and cobble substrates. Further 

investigations of sub-species-level distributions may explain variability within grain-size 

category associations.  

Two rockfish-complex groups (OLYT and Sebastomus) also responded to the 

grain-size scale, but with the added component of relief, suggesting an even more 

specific habitat association. Indeed, these two groups were frequently seen in moderate-

relief patches of varying grain-sizes. Olive/yellowtail rockfish are known to occur over 

boulders and rock walls (Love et al. 2002). The Sebastomus complex contains too many 

species to infer associations about each, though rosy rockfish probably composed a 

significant amount. Rosy rockfish have been described to inhabit a variety of rock 

substrates including boulders, high-relief rock, and sometimes low-lying cobbles (Love et 

al. 2002). 

Our analytical approach assumed a uniform detection probability; that individuals 

of each species were equally detectable in each habitat type. Cryptic or well-disguised 

species in concealing habitats and species or groups that may be more easily startled by 
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the oncoming sled and remain out of view – occurrences which both may be present in 

these data – can violate this assumption when they are undetected in observations. 

Although MacKenzie (2006) contends that inferences made in violation of this 

assumption may result in an inaccurate estimation of habitat use by a species, given the 

difficulties of surveying the depths of the ocean floor with any tool, we must proceed 

with the assumption that we sampled an adequate amount of each habitat type to 

accurately represent distributions within each type. With this assumption acknowledged, 

the results presented here represent our understanding of the distributions as they were 

observed with the camera sled.  

The taxonomic level to which an individual fish can be identified (often a factor 

of the image quality) can influence the applicability of these associations and, ultimately, 

their role in management. For many fishes, especially rockfishes (Genus Sebastes) and 

flatfishes (Order Pleuronectiformes) the ability to identify to species proved difficult, 

given the continuous movement of the sled (and often of the fish). While grouping at the 

genus or species-complex level prevents us from making inferences about some 

individual species, broad grouping of fishes are important groups for management 

considerations. These more general groupings represent regulatory units, such as 

recreational bag limits of 10 “rockfish” per person per day (CDFG 2011) on recreational 

vessels. Commercial fisheries also operate under “rockfish” quotas. In both cases, take of 

fish is not managed at the species scale, with the exception of a few protected species (i.e. 

cowcod and boccacio).  

The RI scores provided support for the role that each of the variables play within 

a model set. Clearly, for each taxonomic-level grouping, substrate was the most strongly 

supported variable for nearly all groups (depth, the one exception, was the strongest for 

combfish/lingcod). In many cases, depth was the second-most supported variable. The 

disparate importance of bedforms and biogenic structure variables for most groupings 

suggests that these have little to no effect on distributions; minimally, we can say that 

they received considerably less support than substrate and depth. Variables from models 

with high RI values across many groups, for example substrate (hard vs. soft), may be 

considered good global monitoring attributes for monitoring many groups 

simultaneously. Variables that demonstrated high relative importance for certain groups, 
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such as biogenic structure for large rockfishes, can be considered important attributes to 

study for monitoring a given group of interest.  

Ideally, a multiple-variable landscape description for each fish grouping would be 

the outcome resulting from these models. The high ERo scores for MS2 suggest that, the 

best-fit model(s) are quite good at describing distributions compared to a random model 

(the null) while the low ERB values suggests that the combination of variables does not 

affect the fit of the model as much. It is possible that other variables not collected in this 

study would better describe the distribution. Such variables worth considering include 

distance to an ecotone (e.g., Hunter-Thompson 2011), a measure of rugosity obtained 

from multibeam data (e.g.,Young et al. 2010), and the co-occurrence of conspecifics and 

other fishes (Williams and Ralston 2002). Other distribution literature suggests that 

demersal fish distributions are not simple but are contingent on many other variables 

(Anderson et al. 2007). Continuing incorporation of additional environmental and 

structural variables will eventually lead to the ability to converge upon a model that 

includes the multitude of predictors of fish distributions. 

The high standard error values for some of the averaged model coefficients 

prevented us from making statements with certainty about those specific categories. 

These standard error values may be due to data collection methods used with the camera 

sled. It is difficult to “fly” the sled at a constant altitude over stretches of moderate- and 

high-relief hard substrates. Thus, useable frames within the study area were often 

representative of lower-relief and soft-bottom substrates. Regardless, these lower-relief 

habitats contained different taxonomic groups, fewer fish, less diversity, and mostly 

flatfish, which are difficult to identify to species with camera sled imagery. Low sample 

sizes of each fish grouping compared to the high number of sample units (10,541 frames) 

may also have contributed to the high standard errors for coefficients and constrained our 

ability to confidently infer more about each category.  

There is an increasing need to address spatial autocorrelation in distribution 

studies (Dormann 2007; Carl and Kuhn 2007) because it violates the assumption of 

independence. However, by plotting Moran’s I correlograms using model residuals, we 

determined that substantial spatial autocorrelation existed for only one species (pygmy 

rockfish). To correct for this, we sub-sampled the data by removing every other point, 
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modeled this new data in the GLM set, and re-plotted the Moran’s I correlogram. The 

new correlogram for pygmy rockfish (Appendix B) verified that Moran’s I was no longer 

decreasing with increasing distance. Pygmy rockfish were the only fish to demonstrate 

spatial autocorrelation and they are known schooling fishes that occur in large groups 

(Yoklavich et al. 2000; Laidig et al. 2009). Pygmy schools were observed in this study 

spanning multiple consecutive frames, so removing adjacent frames in the culling step 

naturally reduced this violation of assumption. Culling in some circumstances may be 

unavoidable depending on the behavior, life history, and ecological niches of certain 

fishes. Since spatial autocorrelation was only observed for this one species, we were able 

to address it with the culling process. Had more species demonstrated autocorrelation, we 

would have incorporated a term in the model. This approach is strategic because it 1) 

minimizes removal of data points from an already sparse set and 2) can confirm the 

assumption of independence. By using the model residuals rather than the raw data, we 

were able to detect spatial autocorrelation (or lack thereof) after the model had accounted 

for the habitat variables that we originally sought to explain and therefore minimized the 

removal of data points.  

Overall, the generalized linear models, in combination with AIC weights, model 

averaging techniques, and Moran’s I correlograms provided a robust analysis of the 

seafloor habitat associations of fish groupings to the extent that it is detectible using tow-

sled technology. These techniques, when used in future model-fitting with additional 

landscape variables not investigated here, will ultimately construct an image of the 

landscape with the components and properties to which fish species and groups are being 

detected.  
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CHAPTER 3 

SUMMARY OF THE APPLICATIONS OF 

MARINE LANDSCAPE MODELING TO 

MANAGEMENT AGENCIES 

The research presented here was, from its inception, directed toward informing 

resource management at the federal level, with the Monterey Bay National Marine 

Sanctuary (MBNMS, NOAA) as well as at the California state level with the MPA 

Monitoring Enterprise and the California Department of Fish and Game (CDFG). 

MBNMS and CDFG manage large areas of the marine environments and yet they lack 

sufficient information on many of the resources they manage (MLMA 1998; NOAA 

2008, 2009). Data on fish distributions and habitat characterizations are important for 

understanding how to manage fisheries and protect habitats (Airame et al. 2003). By 

evaluating imagery data collected by the sled and a multi-variable modeling approach to 

understanding how fish use habitat, we have provided information that is of potential 

value to two management agencies.  

MONTEREY BAY NATIONAL MARINE SANCTUARY (NOAA)  

As one of the nation’s largest National Marine Sanctuaries, the MBNMS is faced 

with the daunting task of characterizing the many ecosystems that fall within its limits 

(NOAA 2008). Its 8000 km
2
 are home to a vast number of diverse ecosystems including 

submarine canyons, deep seamounts, the productive rocky reef and soft-bottom shelf, 

with tidepools and sandy beaches scattered along its roughly 450 km of coastline. 

The results presented in this study can answer and inform some of the questions 

and issues that the MBNMS must grapple with as a management agency. Three major 

documents outline the issues that MBNMS must address: 1) The MBNMS Condition 

Report (NOAA 2009); 2) The MBNMS Management Plan (NOAA 2008); and 3) The 

MBNMS Ecosystem-Based Management Initiative (NOAA 2011).  
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The Condition Report (NOAA 2009) asks questions about the status of 

knowledge of resources in the MBNMS. This report asks specifically about the 

“abundance and distribution of major habitat types and how [are they] changing?” The 

report recognizes that little is known about the offshore environment; however, the 

results presented here directly address this question by describing the habitats at Piedras 

Blancas, a previously uncharacterized area of the Sanctuary. Prior to these imagery 

surveys, very little was known about the seafloor habitats in the site. 

The Management Plan (NOAA 2008) guides the process for understanding and, 

ultimately, protecting the resources within the MBNMS (NOAA 2008). Action plans 

within this document identify areas or issues in the MBNMS that are in need of attention. 

These plans can stem from concerned public citizens or from top-down issues presented 

from an umbrella government agency. The results from these analyses presented above 

can be specifically applied to the Sanctuary Integrated Monitoring Network (SIMoN) 

Action Plan with its goal to create an ecosystem-wide monitoring program. These data 

will serve as the baseline for ecosystem data collected in the MBNMS. In order to 

monitor the resources in the sanctuary, a baseline is needed by which to measure natural- 

and anthropogenic-induced changes in the future.  

Characterization of these ecosystems is an ongoing objective in the MBNMS 

Management Plan (NOAA 2008) and defining these systems with increasing specificity 

will continue to improve the scale at which they are characterized. Prior to the imagery 

surveys of this project and multibeam mapping by the CSUMB Seafloor Mapping Lab, 

very little was known about the shelf seafloor of the south sanctuary other than from 

recreational fishing catches. These surveys and analyses have provided the MBNMS with 

fish and habitat data for a previously uncharacterized area. Managers can make decisions 

with increased understanding about the organisms and habitats found there.  

The MBNMS Ecosystem-Based Management Initiative (EBMI, NOAA 2011) 

focuses on improving current management efforts by incorporating ecosystem-based 

approaches that consider the interactions within systems. The objectives of EBMI are: to 

address ecosystem health and function, protect unique and rare areas, and facilitate 

research to better understand human impacts and sustainable resource use. The data 
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collected here provides baseline characterization from which changes in these the 

ecosystem objectives can be measured.  

In addition to these reports, a major goal of the MBNMS in general is to provide 

outreach and education about the sanctuary to the public. Aside from the nearshore areas 

around Monterey Bay, much of the MBNMS is fairly inaccessible to the public and thus 

there is a struggle in demonstrating how “their” sanctuary is valuable. Making these data 

and images available to the public engages awareness and interest in what may only look 

like endless blue water from where they stand or drive. Furthermore, making data 

available to managers allows them to make informed statements and decisions about their 

respective areas of management.  

Data from these surveys conducted at Piedras Blancas, as well as at several other 

areas of interest within MBNMS, have been compiled in an outreach report titled 

“Characterizing the Deep: Surveys in the Monterey Bay National Marine Sanctuary 

2007-2010”. In this report, readers are able to view photos and simplified data collected 

during characterization surveys (IfAME/MBNMS 2011). Sections highlight the 

importance of fish distributions throughout different study areas and the habitats types in 

each – a distilled version of the details provided in the analysis here. Also, a great deal of 

selected imagery from all IfAME-MBNMS Partnership surveys is made available in an 

online interactive database known as the Shelf Characterization and Image Display 

(SCID; http://sep.csumb.edu/ifame/scid). This GoogleMap-based interface allows the 

public to see all of the locations where surveys have been conducted and to view photos 

and videos from these sites, many of which support very diverse ecosystems, throughout 

the MBNMS. Aside from the small visitor’s center in San Simeon, the southern stretch of 

the MBNMS from Point Lobos southward is fairly unreachable by the public; this 

highlights the importance of these products in portraying the more remote areas of the 

sanctuary.  

The camera sled is owned and has been made available by the National Marine 

Sanctuary Program. A tremendous benefit of the sled is its ease of operation and 

availability to the individual sanctuaries for characterization surveys. Prior to these 

analyses, the imagery data collected from the sled had not been used to answer complex 

ecological modeling questions. However the results of this project suggest that this tool is 
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a very valuable asset and can provide a great deal of insight into questions of landscape 

modeling and fish distributions. Hundreds of hours of video have been collected with the 

sled at other sites in MBNMS and can potentially be used to answer other questions or 

expand upon these analyses.  

THE MARINE LIFE PROTECTION ACT INITIATIVE: MPA MONITORING 

ENTERPRISE AND CALIFORNIA DEPARTMENT OF FISH AND GAME 

Upon the creation in 2007 of the Central Coast Region MPA Network created 

under the MLPA, baseline data were needed to understand the state of the ecosystem at 

the time of implementation (CDFG 2007). Limited state funding was provided for 

projects to conduct baseline monitoring surveys at a limited number of MPA sites. While 

these data were robust and will provide valuable assessments of MPA efficacy, there will 

be gaps in reporting of baselines and changes in un-monitored MPAs. These data can be 

used by the CDFG for adaptive management measures, by adjusting the size and extent 

of the current MPAs, based on the assessments of MPA performance and recoveries of 

fish groups targeted for protection. 

Piedras Blancas was not included in other MPA imagery surveys conducted in 

deep water (30-300 m). Therefore the data from this project are unique and will be made 

available during the Five-Year Review of the Central Coast MPA Network, scheduled for 

fall of 2012. This review is led by researchers and policymakers to synthesize baseline 

and monitoring data from CCR MPAs. A section of the review will focus on 

collaborative efforts by other agencies and organizations who have conducted monitoring 

within any CCR MPAs. Data from this study, as well as all other areas surveyed under 

the broad MBNMS Characterization project, are being be compiled into a database that 

will provide information on fish and select invertebrate diversity and abundance, as well 

as habitat availability and distributions. The overlap of jurisdictions of the MBNMS and 

state MPAs has allowed for sled imagery data collected near Piedras Blancas to serve a 

dual-purpose of providing baseline data on these otherwise un-monitored areas while 

characterizing the MBNMS.  
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APPENDIX A 

COMPLETE MODEL SETS 
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MS1: Substrate Classification Scheme 

M0 = y ~ 0 

M1 = y ~ SUBS1 

M2 = y ~ SUBScombo 

M3 = y ~ GS1 

M4 = y ~ GScombo 

M5 = y ~ HAB1 

M6 = y ~ HABcombo 

M7 = y ~ REL1 

M8 = y ~ RELcombo 

 

MS2: Full model set 

M0 = y ~ 0 

M1 = y ~ [result from MS1]  

M2 = y ~ DEP 

M3 = y ~ MODEP 

M4 = y ~ BIOGEN 

M5 = y ~ [result from MS1] + DEP 

M6 = y ~ [result from MS1] + MODEP 

M7 = y ~ [result from MS1] + BIOGEN 

M8 = y ~ DEP + MODEP  

M9 = y ~ DEP + BIOGEN 

M10 = y ~ MODEP + BIOGEN 

M11 = y ~ [result from MS1] + DEP + MODEP 

M12 = y ~ [result from MS1] + DEP + BIOGEN 

M13 = y ~ [result from MS1] + MODEP + BIOGEN 

M14 = y ~ DEP + MODEP + BIOGEN 

M15 = y ~ [result from MS1] + DEP + MODEP + BIOGEN
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APPENDIX B 

AVERAGED COEFFICIENTS FOR MS2 

 

- Substrate Model Coefficients (Table B1) 

- Relief Model Coefficients (Table B1) 

- Grain-Size Model Coefficients (Table B2, B3) 

- Habitat-Complexity Model Coefficients (Table B4, B5) 

- 

- Plots of Substrate Coefficients Relative to Each Other (B6 A, B, C) 
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Table B1. Averaged substrate coefficients for substrate variables (SUBS-primary and SUBS-combo) and relief (REL) 

variables. Shading indicates categories for which SE>2 and for which inferences regarding associations could not confidently 

be made. 

 
Models that used primary substrate (SUBS-primary) in MS2

BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO HH HS SH SS

Painted greenling (Oxylebius pictus)

Coefficient -3.3 0.0 0.0 -0.1 0.2 0.0 -2.3 0.0 -20.6 -19.8

SE 4010.0 1820.0 0.0 0.0 1600.0 0.0 1.1 1.3 6750.0 1800.0

CI Low -7870.0 -3580.0 0.0 -0.1 -3130.0 0.0 -4.5 -2.5 -13300.0 -3560.0

CI Upper 7870.0 3580.0 0.0 0.0 3130.0 0.0 -0.1 2.5 13200.0 3520.0

Rosy rockfish (Sebastes rosaceus )

Coefficient -1.4 0.0 0.0 0.0 0.0 0.0 -24.0 -6.2 -5.6 -4.8

SE 686.0 0.0 0.4 0.0 1000.0 0.0 1130.0 1.3 0.9 1.0

CI Low -1350.0 -0.1 -0.7 0.0 -1960.0 -0.1 -2240.0 -8.8 -7.3 -6.8

CI Upper 1340.0 0.1 0.7 0.0 1960.0 0.1 2190.0 -3.6 -3.9 -2.8

Squarespot rockfish (Sebastes hopkinsi )

Coefficient -3.2 -2.3 0.0 0.0 -0.8 -0.2 -24.6 -24.5 -6.6 -6.5

SE 4220.0 1340.0 0.6 0.0 1630.0 1.1 1820.0 7930.0 2.1 2.3

CI Low -8270.0 -2630.0 -1.2 0.0 -3200.0 -2.4 -3590.0 -15600.0 -10.7 -10.9

CI Upper 8260.0 2620.0 1.1 0.1 3200.0 2.0 3540.0 15500.0 -2.5 -2.0

Blue/black rockfish (S. mystinus/melanops )

Coefficient -4.4 -3.5 0.0 -0.1 0.0 6.2 -10.8 -2.1 -1.5 -1.2

SE 1510.0 591.0 0.0 0.0 0.1 595.0 595.0 0.8 1.0 1.0

CI Low -2960.0 -1160.0 -0.1 -0.1 -0.1 -1160.0 -1180.0 -3.6 -3.5 -3.2

CI Upper 2950.0 1160.0 0.1 0.0 0.1 1170.0 1150.0 -0.6 0.4 0.8

Copper/gopher rockfish (S. caurinus/carnatus )

Coefficient 0.0 0.8 1.2 0.0 -0.1 0.0 -6.5 -4.2 -3.2 -2.1

SE 0.0 0.7 1.4 0.0 0.8 0.0 1.4 1.3 0.8 0.9

CI Low 0.0 -0.7 -1.6 -0.1 -1.7 0.0 -9.2 -6.8 -4.8 -3.9

CI Upper 0.0 2.2 3.9 0.0 1.4 0.0 -3.8 -1.7 -1.6 -0.3

Flatfishes (Order Pleuronectiformes)

Coefficient -2.7 0.0 0.1 0.0 0.0 0.0 -20.6 -20.6 -5.9 -3.3

SE 556.0 0.0 0.1 0.0 0.0 0.1 352.0 1100.0 1.0 0.2

CI Low -1090.0 0.0 -0.2 0.0 0.0 -0.1 -710.0 -2170.0 -7.8 -3.7

CI Upper 1090.0 0.0 0.3 0.0 0.0 0.2 669.0 2130.0 -3.9 -2.9

Models that used substrate combination (SUBS-combo) in MS2
BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO Hard Soft

Pygmy rockfish (Sebastes wilsoni )

Coefficient -4.2 0.0 0.0 0.1 0.0 0.0 -30.0 -10.1

SE 4650.0 2010.0 0.0 0.0 1520.0 0.0 1720.0 2.5

CI Low -9120.0 -3940.0 0.0 0.0 -2970.0 -0.1 -3390.0 -15.0

CI Upper 9110.0 3940.0 0.0 0.1 2970.0 0.1 3330.0 -5.3

Ronquils (Rathbunella  spp)

Coefficient -2.4 0.0 0.1 0.0 -7.3 0.0 -9.2 -5.1

SE 484.0 0.0 0.3 0.0 489.0 0.0 1.5 0.9

CI Low -951.0 0.0 -0.6 0.0 -966.0 0.0 -12.1 -6.8

CI Upper 946.0 0.0 0.8 0.0 952.0 0.0 -6.3 -3.4

Models that used Relief in MS2
Combfish/lingcod (Zaniolepis spp & Ophiodon elongatus ) BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO High Moderate Low Crested

Coefficient -3.6 -0.6 -0.6 0.0 -1.2 -0.9 -20.6 -20.6 -7.3 -6.8

SE 825.0 2.3 2.2 0.0 2.7 2.7 2410.0 796.0 3.31 3.12

CI Low -1620.0 -5.1 -4.8 0.0 -6.5 -6.1 -4750.0 -1580.0 -13.8 -12.9

CI Upper 1610.0 3.8 3.7 0.1 4.2 4.4 4710.0 1540.0 -0.81 -0.685  
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Table B2. Averaged substrate coefficients for primary grain-size (GS1; A) and 

grain-size combination (GS-combo; B) variables. Shading indicates categories for 

which SE>2 and for which inferences regarding associations could not confidently 

be made.  

 

A) Canary/vermillion/yelloweye rockfish (S. pinnager/miniatus/ruberrimus)

Rock Boulder Cobble Pebble/Gravel Sand Mud

Coefficient -4.6 -4.5 -6.1 -23.2 -5.5 -22.9

SE 0.6 0.7 1.2 11200.0 0.7 705.0

CI Low -5.8 -5.8 -8.4 -22000.0 -6.9 -1410.0

CI Upper -3.5 -3.1 -3.8 21900.0 -4.0 1360.0  

 

B) Blackeye goby (Rhinogobiops nicholsi)

Secondary Habitat Type

M N P C B R

M 0.00 -11.00 5.60 -10.90 5.60 6.01

N 1.86 3.52 -11.30 5.08 4.82 6.01

P 5.60 3.23 -11.20 -11.20 5.60 5.60

C -11.00 4.76 -11.40 5.07 4.23 4.27

B -11.10 4.80 5.60 4.24 3.35 4.61

R -11.20 4.51 -11.20 5.28 4.18 4.13
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m
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Table B3. Averaged coefficients for biogenic structure, depth, and bedform for 

primary grain-size (GS1; A) and grain-size combination (GS-combo; B) variables. 

Shading indicates categories for which SE>2 and for which inferences regarding 

associations could not confidently be made.  

 
A) Canary/vermillion/yelloweye rockfish (S. pinnager/miniatus/ruberrimus)

BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO

Coefficient 0.0 -1.6 0.0 0.0 -2.6 0.0

SE 0.3 694.0 0.0 0.0 484.0 0.0

CI Low -0.5 -1360.0 0.0 0.0 -951.0 0.0

CI Upper 0.5 1360.0 0.0 0.0 946.0 0.0

B) Blackeye goby (Rhinogobiops nicholsi)

BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO

Coefficient -0.2 0.1 0.0 0.0 -0.6 0.0

SE 0.4 0.5 0.0 0.0 0.8 0.0

CI Low -0.9 -0.8 0.0 0.0 -2.2 0.0

CI Upper 0.5 1.0 0.0 0.0 1.0 0.0  
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Table B4. Averaged substrate coefficients for habitat complexity combination 

(HABCOM-combo) for large rockfish. Shading indicates categories for which SE>2 

and for which inferences regarding associations could not confidently be made.  

 
Secondary Habitat Type

MCS NCS MLO NLO CLO BLO RLO CMD BMD RMD BHI RHI

MCS -10 -10 -10.48

NCS -10 3.06 -10 3.87 -10 5.88 5.20 -10.48 -10.48 7.77

MLO -10 -10 0.00 -10 -10 -10.48 7.16

NLO 3.53 4.23 4.51 3.71 5.05 5.01 4.86 -10.48 5.87 -10.48

CLO 7.15 5.11 4.54 5.32 4.35 -10.48 5.78 5.37

BLO -10 -10 6.09 5.78 5.34 5.38 5.20 6.91

RLO -10 7.14 6.02 5.57 6.01 4.44 -10.48 6.22 5.85 -10.48

CMD

BMD -10 5.03 5.62 5.48 5.91 -10.48 5.96 6.16 5.88 5.08

RMD -10 6.32 6.12 5.37 5.61 6.29 5.87 6.01

BHI 7.13 -10.48

RHI -10 -10 -10.48 6.01 6.43 5.40
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Table B5. Averaged coefficients for biogenic structure, depth, and bedform for large 

rockfish (only fish for which HABCOM was the best classification scheme).  

 

BIO-HARD BIO-SOFT BIO - NONE Depth MODEPS-YES MODEPS-NO

Coefficient 0.6 0.8 0.0 0.0 0.3 0.0

SE 0.2 0.7 0.0 0.0 0.7 0.0

CI Low 0.1 -0.5 0.0 0.0 -1.1 0.0

CI Upper 1.0 2.2 0.0 0.0 1.7 0.0
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Figure B1. Plot of substrate coefficients relative to each other for the substrate class 

scheme (SUBS; A), grain-size scheme (GS; B), and habitat complexity scheme 

(HABCOM; C). Values to the right indicate that the fish shows a stronger 

association to the corresponding substrates than values on the left. Categories 

corresponding to coefficient values for which SE>2 are not shown.  Only fish groups 

with more than two coefficients are shown. Bars in a darker shade indicate the 

reference coefficient, if it was included (i.e., was within SE limits).  

 

A) 
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B)  
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C)  
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Figure B2. Correlograms of Moran’s I plotted at 50m bins for each fish grouping. 

 

 

Figure B3. Correlogram for pygmy rockfish after data culling (to remove adjacent 

frames)      
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APPENDIX C 

R-CODE FOR GLM AND AIC COMPARISONS



 

 

GLM and AIC R-Code  

(example of fish grouping RF_LG is provided, all other fish groupings 

were the same code, but call their data instead, i.e. “OLYT”) 

 

#Import and name raw data from CSV (Excel file) 

raw.table<- read.csv(file.choose()) 

 

#Code to create AIC comparison table  

AICtable <- function( aic, n) { 

 K <- aic$df 

 AICc <- aic$AIC + 2 * K * (K+1) / ( n - K - 1 ) 

 delAIC<- AICc - min( AICc ) 

 AICw <- exp(-0.5*delAIC) / sum( exp(-0.5*delAIC)) 

 data.frame( aic, AICc, delAIC , AICw) 

} 

 

#re-leveled categories so the reference is the lowest, softest 

#possibility (ie soft, mud, lo-relief, no MODEP or biostructure) 

raw.table$Subs1<-relevel(raw.table$Subs1, ref = "S") 

raw.table$SubsCombo<-relevel(raw.table$SubsCombo, ref = "SS") 

raw.table$GS1<-relevel(raw.table$GS1, ref = "M") 

raw.table$GScombo<-relevel(raw.table$GScombo, ref = "MM") 

raw.table$REL1<-relevel(raw.table$REL1, ref = "LO") 

raw.table$Hab1<-relevel(raw.table$Hab1, ref = "MLO") 

raw.table$HabCombo<-relevel(raw.table$HabCombo, ref = "MLOMLO") 

raw.table$BIOSTRUCT<-relevel(raw.table$BIOSTRUCT, ref = "NONE") 

raw.table$MODEPS<-relevel(raw.table$MODEPS, ref = "NO") 

 

#For MS1: Large rockfish category(response) = RF_LG (all RF>10cm) 

Hm0.RF_LG<-glm(raw.table$RF_LG~1, family=binomial) 

Hm1.RF_LG<-glm(raw.table$RF_LG~raw.table$Subs1, family=binomial) 

Hm2.RF_LG<-glm(raw.table$RF_LG~raw.table$SubsCombo, family=binomial) 

Hm3.RF_LG<-glm(raw.table$RF_LG~raw.table$GS1, family=binomial) 

Hm4.RF_LG<-glm(raw.table$RF_LG~raw.table$GScombo, family=binomial) 

Hm5.RF_LG<-glm(raw.table$RF_LG~raw.table$Hab1, family=binomial) 

Hm6.RF_LG<-glm(raw.table$RF_LG~raw.table$HabCombo, family=binomial) 

Hm7.RF_LG<-glm(raw.table$RF_LG~raw.table$REL1, family=binomial) 



 

 

Hm8.RF_LG<-glm(raw.table$RF_LG~raw.table$RELcombo, family=binomial) 

 

AICtable( AIC( Hm0.RF_LG, Hm1.RF_LG, Hm2.RF_LG, Hm3.RF_LG, Hm4.RF_LG, 

Hm5.RF_LG, Hm6.RF_LG, Hm7.RF_LG, 

Hm8.RF_LG),length(Hm0.RF_LG$residuals))) 

 

#For MS2: Large rockfish category(response) = RF_LG (all RF>10cm) 

M0.RF_LG<-glm(raw.table$RF_LG~ 1 , family=binomial) 

Mn.RF_LG<-glm(raw.table$RF_LG~ 0 , family=binomial) 

M1.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo, family=binomial) 

M2.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$Depth, family=binomial) 

M3.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$BIOSTRUCT, 

family=binomial) 

M4.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$MODEPS, family=binomial) 

M5.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$Depth, family= binomial) 

M6.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$BIOSTRUCT, family= binomial) 

M7.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$MODEPS, family= binomial) 

M8.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$Depth + 

raw.table$BIOSTRUCT, family= binomial) 

M9.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$Depth + raw.table$MODEPS, 

family= binomial) 

M10.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$BIOSTRUCT + 

raw.table$MODEPS, family= binomial) 

M11.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$Depth + raw.table$BIOSTRUCT, family= binomial) 

M12.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$Depth + raw.table$MODEPS, family= binomial) 

M13.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$BIOSTRUCT + raw.table$MODEPS, family= binomial) 

M14.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$Depth + 

raw.table$BIOSTRUCT + raw.table$MODEPS, family= binomial) 

MSAT.RF_LG<-glm(raw.table$RF_LG~ 0 + raw.table$HabCombo + 

raw.table$Depth + raw.table$BIOSTRUCT + raw.table$MODEPS, family= 

binomial) 



 

 

 

AICtable( AIC( M0.RF_LG, Mn.RF_LG, M1.RF_LG, M2.RF_LG, M3.RF_LG, 

M4.RF_LG, M5.RF_LG, M6.RF_LG, M7.RF_LG, M8.RF_LG, M9.RF_LG, M10.RF_LG,  

M11.RF_LG, M12.RF_LG, M13.RF_LG, M14.RF_LG, MSAT.RF_LG), 

length(M0.RF_LG$residuals) ) 

 

#Residuals for the RF_LG winning model (M11) 

RF_LG.res<-matrix(residuals(M11.RF_LG)) 

summary (M11.RF_LG) 

par(mfrow=c(2,2)) 

plot (M11.RF_LG) 

 

CORRELOGRAM CODE 

rm(list=ls()); 

graphics.off();if(.Platform$OS.type!="windows"){windows=function() 

quartz()} 

dev.corr=3;windows(w=10,h=10,xpos=900,ypos=30); par(mfrow=c(5,3)); 

par(mai=c(0.3,0.3,0.02,0.02)) 

 

#Import and name raw data from CSV (Excel file) 

SAC1<-read.csv(file.choose()) 

N = length(SAC1[,1]); print( paste( "Total rows in all data:", N)) 

 

#Cull points too close too each other: 

if(1) { 

 print( "Culling frames that are too close to previous ones..." ) 

 cull_threshold = 2 # Meters 

 # Pre-grab these as vectors, for speed later: 

 x = SAC1$north; y = SAC1$east; cam = SAC1$Camline; cull = rep( FALSE, 

N ) 

 for( i in 1:N ) { 

  frame = SAC1[i,] 

  if( i == 1 ) { prev = i; next } 

  if( cam[i] != cam[prev] ) { prev = i; next } 

  dist = sqrt( ( x[i] - x[prev] ) ^ 2 + ( y[i] - y[prev] ) ^ 2 ) 

  if( dist <= cull_threshold ) { cull[i] = TRUE; next } 

  prev = i  



 

 

 } 

 SAC1 = SAC1[ cull == FALSE, ] 

 N = length(SAC1[,1]); print( paste( "Total rows in all data AFTER 

CULLING CLOSE ONES:", N)) 

} 

 

#Re-level factors so the reference is the same for all models (soft, 

#mud, lo-relief, no MODEP, no BIOSTRUCT): 

SAC1$Subs1    <-relevel(SAC1$Subs1,     ref = "S") 

SAC1$SubsCombo<-relevel(SAC1$SubsCombo, ref = "SS") 

SAC1$GS1      <-relevel(SAC1$GS1,       ref = "M") 

SAC1$GScombo  <-relevel(SAC1$GScombo,   ref = "MM") 

SAC1$Hab1     <-relevel(SAC1$Hab1,      ref = "MLO") 

SAC1$HabCombo <-relevel(SAC1$HabCombo,  ref = "MLOMLO") 

SAC1$BIOSTRUCT<-relevel(SAC1$BIOSTRUCT, ref = "NONE") 

SAC1$MODEPS   <-relevel(SAC1$MODEPS,    ref = "NO") 

 

# Fit a the best-fit models for each fish group: 

ms = list( name=NULL, form=NULL ) 

addm = function( name, form ) { 

nextm = length(ms$name)+1; ms$name[nextm] = name; ms$form[[nextm]] = 

form; return(ms) 

} 

ms = addm( "M11.RF_LG",   formula("SAC1$RF_LG   ~ 0 + SAC1$HabCombo + 0 

+ SAC1$Depth + 0 + SAC1$BIOSTRUCT")) 

ms = addm( "M5.RF_SM",    formula("SAC1$RF_SM   ~ 0 + SAC1$Hab1 + 

SAC1$Depth")) 

ms = addm( "M1.FF",       formula("SAC1$FF      ~ 0 + SAC1$SubsCombo")) 

ms = addm( "M5a.RF_BLBK", formula("SAC1$RF_BLBK ~ 0 + SAC1$SubsCombo + 

SAC1$Depth")) 

ms = addm( "M11.RF_CPGP", formula("SAC1$RF_CPGP ~ 0 + SAC1$SubsCombo + 

SAC1$Depth + SAC1$BIOSTRUCT")) 

ms = addm( "M1.RF_CVYE",  formula("SAC1$RF_CVYE ~ 0 + SAC1$GS1")) 

ms = addm( "M1.RF_OLYT",  formula("SAC1$RF_OLYT ~ 0 + SAC1$Hab1"))      

ms = addm( "M5.RF_PYGM",  formula("SAC1$RF_PYGM ~ 0 + SAC1$Subs1 + 

SAC1$Depth")) 

ms = addm( "M1.RF_ROSY",  formula("SAC1$RF_ROSY ~ 0 + SAC1$SubsCombo")) 



 

 

ms = addm( "M1.RF_SQSP",  formula("SAC1$RF_SQSP ~ 0 + SAC1$SubsCombo")) 

ms = addm( "M1.RF_STOM",  formula("SAC1$RF_STOM ~ 0 + SAC1$Hab1")) 

ms = addm( "M12.BEG",     formula("SAC1$BEG     ~ 0 + SAC1$GScombo + 

SAC1$Depth + SAC1$MODEPS")) 

ms = addm( "M12.RQN",     formula("SAC1$RQN     ~ 0 + SAC1$Subs1 + 

SAC1$Depth + SAC1$MODEPS")) 

ms = addm( "M5.OXY",      formula("SAC1$OXY     ~ 0 + SAC1$SubsCombo + 

SAC1$Depth"))  

ms = addm( "M12a.CMLG",   formula("SAC1$CMLG    ~ 0 + SAC1$Subs1 + 

SAC1$Depth + SAC1$MODEPS")) 

 

correlogram_type = "Residuals" # "Response" # vs Residuals 

 

dev.set(dev.corr) 

for( m in 1:length(ms$name)) {   

  M.name      = ms$name[m] 

  print(paste("FITTING MODEL:",M.name)); print("-----------------------

---");flush.console() 

  M = glm( ms$form[[m]], fam=binomial ) 

  if( correlogram_type == "Response" ) {moran_x=M$y} else 

{moran_x=residuals( M, type="response" )} 

 

# Make Moran correlograms  

  camlines = sort(unique(SAC1$Camline)) 

  bins = 110; correlogram = matrix( ncol=4, nrow=bins+1, data=0 ) 

  colnames(correlogram) = c( "Bin", "Dist <=", "Mean", "N" ) 

  bin_size =10; bin_range = bins * bin_size # bin_size is in meters. 

  for( bin in 1:(1+bins) ) correlogram[ bin,1:2 ] = c( bin, (bin-1) * 

bin_size ) 

 

#Only consider comparisons within camlines, but sum these over all 

#camlines: 

  moran_x_bar = mean( moran_x ); moran_denominator = 0; 

moran_denominator_n = 0 

  for( camline in camlines ) { 

    included = ( SAC1$Camline==camline ); SUB = SAC1[ included, ] 

    n = length(SUB[,1]); print(paste("Camline:",camline,"Rows:",n)) 



 

 

 

#Using matrices is much faster than using data frames. Extract what we 

need into a matrix. 

    mat = matrix( nrow=n, ncol=3 ); colnames(mat) = c( "Resp", "E", "N" 

) 

    cR=1; cE=2; cN=3 # R=Response, E=Easting. N=Northing 

    mat[,cR ] = moran_x[ included ]; mat[,cE ]= SUB$east; mat[,cN ] = 

SUB$north 

 

#Compare every row to every other row, compute contribution to Moran's 

I 

    # and add to appropriate bin of correlogram: 

    for( i in 1:n ) { 

      if(i<10 | (i<100 & i%%10==0) | i%%100==0 ) { print(i); 

flush.console() } 

      Ri = mat[i,cR]; Ei = mat[i,cE]; Ni = mat[i,cN] 

      moran_denominator = moran_denominator + (Ri - moran_x_bar ) ^ 2 

      moran_denominator_n = moran_denominator_n + 1 

      if( i == n ) break 

      for( j in (i+1):n ) { 

        Rj = mat[j,cR] 

        dx = Ei - mat[j,cE]; if( dx > bin_range ) next # Faster than 

using sqrt. 

        dy = Ni - mat[j,cN]; if( dy > bin_range ) next 

        dist = sqrt( dx*dx + dy*dy ); if( dist > bin_range ) next 

        bin = ceiling( dist / bin_size ); if( bin > bins ) stop("bin > 

bin_size") 

        moran_numerator = ( Ri - moran_x_bar ) * ( Rj - moran_x_bar ) # 

*2 

        correlogram[1+bin,3:4] = correlogram[1+bin,3:4] + c( 

moran_numerator, 1 ) 

      } 

    } 

  } 

 

#Complete the Moran's summations and averaging: 

moran_denominator = moran_denominator / moran_denominator_n 



 

 

for( bin in 1:(1+bins) ) {    

    if( correlogram[bin,4] == 0 ) { correlogram[bin,3] = NA; next } 

    if( moran_denominator  == 0 ) { correlogram[bin,3] = NA; next } 

    correlogram[bin,3] = correlogram[bin,3] / correlogram[bin,4] / 

moran_denominator 

} 

 

#Plot 

print("First 10 bins of correlogram:"); print(correlogram[1:10,]); 

x=correlogram[,2]; y=correlogram[,3] 

ylim=c(-1,1); plot(x,y,typ="l",xlab=NULL,ylab=NULL,ylim=ylim) 

points(x,y,pch=19,cex=0.5 ); lines(c(0,1000),c(0,0)); text( 

bin_range,ylim[2],pos=2,M.name) 

 

#Add a smooth line through the noise: 

if(!is.na(mean(y))){lines(x,predict(loess(y~x),new=data.frame(x=x)),col

="red")} 

} 

 

 

 


